14 results
Search Results
Now showing 1 - 10 of 14
Article Citation - WoS: 11Citation - Scopus: 12Structural, optical, electrical and dielectric properties of Bi1.5Zn0.92Nb1.5-xNixO6.92-3x/2 solid solution(Taylor & Francis Ltd, 2012) Qasrawi, A. F.; Nazzal, E. M.; Mergen, A.The effects of Ni content on the structural, optical, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5O6.92 pyrochlore ceramics have been investigated. Nickel atoms were inserted into pure samples in accordance to the composition Bi1.5Zn0.92Nb1.5-xNixO6.92-3x/2, with x varying from 0.07 to 0.40. The structural analysis revealed that a single phase of the pyrochlore compound can be obtained for x values of 0.07 and 0.10 only. Further increase in Ni caused the appearance of multiple phases. The optical energy band gaps are determined as 3.30, 3.35 and 3.52 eV for Ni content of 0.00, 0.07 and 0.10 respectively. The temperature dependent electrical resistivity and the frequency dependent capacitance are observed to increase with increasing Ni content. The resonance frequency, which was determined from the capacitance-frequency dependence, was observed to shift from 12.14 to 10.47 kHz as the x values increase from 0.00 to 0.10 respectively.Article Citation - WoS: 2Citation - Scopus: 2Structural, Electrical and Anisotropic Properties of Tl4se3< Chain Crystals(Pergamon-elsevier Science Ltd, 2009) Qasrawi, A. F.; Gasanly, N. M.The structure, the anisotropy effect on the current transport mechanism and the space charge limited current in Tl4Se3S chain crystals have been studied by means of X-ray diffraction, electrical conductivity measurements along and perpendicular to the crystal's c-axis and the current voltage characteristics. The temperature-dependent electrical conductivity analysis in the region of 150-400 K, revealed the domination of the thermionic emission of charge carriers over the chain boundaries above 210 and 270 K along and perpendicular to the c-axis, respectively. Below these temperatures, the variable range hopping is dominant. At a consistent temperature range, the thermionic emission analysis results in conductivity activation energies of 280 and 182 meV, along and perpendicular to the c-axis, respectively. Likewise, the hopping parameters are altered significantly by the conductivity anisotropy. The current-voltage characteristics revealed the existence of hole trapping state being located at 350 meV above the valence band of the crystal. (C) 2009 Elsevier Ltd. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 9Thermally Stimulated Current Measurements in Undoped Ga3inse4< Single Crystals(Pergamon-elsevier Science Ltd, 2011) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThe trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0 x 10(-25) cm(2) with concentration of 1.4 x 10(17) cm(-3). (C) 2011 Elsevier Ltd. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 7Trapping Centers and Their Distribution in Tl2ga2< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2009) Isik, M.; Gasanly, N. M.Thermally stimulated current (TSC) measurements with current flowing perpendicular to the layers were carried out on Tl2Ga2Se3S layered single crystals in the temperature range of 10-260K. The experimental data were analyzed by using different methods, such as curve fitting, initial rise and isothermal decay methods. The analysis revealed that there were three trapping centers with activation energies of 12, 76 and 177 meV. It was concluded that retrapping in these centers was negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. The capture cross section and the concentration of the traps have been also determined. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light illumination temperatures. This experimental technique provided values of 10 and 88 meV/decade for the traps distribution related to two different trapping centers. (C) 2009 Elsevier Ltd. All rights reserved.Article Citation - WoS: 17Citation - Scopus: 19Synthesis and Characterization of Bi1.5zn0.92< Pyrochlore Ceramics(Elsevier Sci Ltd, 2012) Qasrawi, A. F.; Kmail, Bayan H.; Mergen, A.The morphological, compositional, structural, dielectric and electrical properties of Bi1.5Zn0.92Nb1.5-xSnxO6.92-x/2 ceramics have been investigated by means of scanning electron microscopy (SEM), X-ray energy dispersion spectroscopy (EDS), X-ray diffraction (XRD), temperature and frequency dependent dielectric constant and temperature dependent conductivity measurements for Sn-contents in the range of 0.00 <= x <= 0.60. It was shown that single phase of the pyrochlore ceramics can only be obtained for x <= 0.25. Above this value a ZnO phase appeared in the XRD patterns and SEM micrographs as well. An increase in the lattice constant and in the temperature coefficient of dielectric constant and a decrease in the dielectric constant values with increasing Sn content was observed for the ceramics which exhibited a single phase formation. A temperature dependent but frequency invariant dielectric constant was observed for this type of ceramics. The lowest electrical conductivity and highest dielectric constant was observed for the sample which contains 0.06 Sn. The Bi1.5Zn0.92Nb1.5-xSnxO6.92-x/2 pyrochlore ceramic conductivities are thermally active above 395 K. For temperatures greater than 395 K, the conductivity activation energy which was found to be 0.415 eV for the pure sample increased to 1.371 eV when sample was doped with 0.06 Sn. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 3Effect of Ionic Substitution on the Structural, Dielectric and Electrical Properties of Bismuth Zinc Niobate Ceramics(Korean Assoc Crystal Growth, inc, 2012) Qasrawi, A. F.; Abu Je'ib, Hussein A.; Mergen, A.; Department of Electrical & Electronics EngineeringThe effects of tin substitution on the structural, dielectric and electrical properties of the Bi1.5Zn0.92Nb1.5O6.92 pyrochlore ceramics have been investigated. Tin atoms was substituted in the A (Bi1.5Zn0.46)-site instead of zinc and in the B ((Zn0.46Nb1.5)-site instead of niobium in accordance to the chemical formulae Bi1.5Zn0.92Nb1.5-xO6.92-x/2 and (Bi1.5-x/3Zn0.46-3x/2Snx)(Nb1.5Zn0.46)O-6.92, for 0.00 <= x <= 0.40 and 0.00 <= x <= 0.60, respectively. A relative single phase formation of the structures was possible for x values less than 0.25 and less than 0.10. Pronounced tunability in the dielectric constant values associated with very low dielectric loss are obtainable by Sn substitution. Furthermore, a frequency invariant but linearly varying temperature dependent dielectric constant is observed. The electrical conductivity decreased by two and one order of magnitude for the A and B-site substitutions, respectively. The temperature-dependent conductivity analysis in the temperature region of 300-500 K, reflected the existence of shallow and deep impurity energy levels being created by the doping process.Article Citation - WoS: 5Citation - Scopus: 7Temperature-Dependent Electrical Resistivity, Space-Charge Current and Photoconductivity of Ga0.75in0.25< Single Crystals(Elsevier Science Bv, 2013) Isik, M.; Gasanly, N. M.Dark electrical resistivity, space-charge-limited (SCL) current and photoconductivity measurements were carried out on Ga0.75In0.25Se single crystals. Analysis of the dark resistivity measurements revealed the presence of one level with activation energy of 0.10 eV. Current voltage characteristics showed that both ohmic and SCL characters exhibit in 180-300 K range. Analysis of the experimental data in the SCL region resulted with a trap level at 0.11 eV above the valence band. Photoconductivity measurements were performed at different light intensities in the temperature range of 150-300 K. Behavior of the recombination mechanism in the crystal was brought out as sublinear recombination from the dependence of photocurrent on illumination intensity. Moreover, obtained activation energies were compared with the results of other experimental techniques applied to Ga0.75In0.25Se crystals in literature. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Trapping Center Parameters in In6s7< Crystals(Elsevier Science Bv, 2011) Isik, M.; Gasanly, N. M.Thermally stimulated current measurements were carried out on In6S7 single crystals in the temperature range of 10-225 K with a constant heating rate of 0.8 K/s. The study of trapping centers was accomplished by the measurements of current flowing along the c-axis of crystals. The analysis of the glow curve according to various methods, such as curve fitting, initial rise and peak shape methods, gives results in good agreement with each other and revealed two trapping centers in In6S7 with activation energies of 157 and 290 meV. Their capture cross sections have been determined as 7.5 x 10(-23) and 7.1 x 10(-20) cm(2),respectively. The good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping has confirmed that retrapping is negligible in these centers. (C) 2011 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 10Structural, Electrical and Dielectric Properties of Bi1.5zn0.92< Pyrochlore Ceramics(Elsevier Sci Ltd, 2012) Qasrawi, A. F.; Mergen, A.The micro-structural, compositional, temperature dependent dielectric and electrical properties of the Bi1.5Zn0.92Nb1.5-xTaxO6.92 solid solution has been investigated. The increasing Ta content from 0.2 to 1.5 caused; single phase formation, a pronounced grain size reduction from similar to 7.0 to 2.5 mu m, sharp decrease in the dielectric constant from 198 to 88 and an increase in the electrical conductivity from 3.16 x 10(-10) to 5.0 x 10(-9) (Omega cm)(-1), respectively. The temperature dependent dielectric constant which is found to be frequency invariant in the frequency range of (0.0-2.0 MHz) exhibited a sharp change in the temperature coefficient of dielectric constant at a (doping independent) critical temperature of 395 K. The analysis of the measured data reflects a promising future for this type of pyrochlore to be used in high voltage passive device applications. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.Article Citation - WoS: 77Citation - Scopus: 78Electrical Properties of Al/Pcbm:zno Heterojunction for Photodiode Application(Elsevier Science Sa, 2020) Gullu, H. H.; Yildiz, D. E.; Kocyigit, A.; Yildirim, M.In this paper, the electrical characteristics of spin-coated PCBM:ZnO interlayered Al/PCBM:ZnO/Si diode are investigated under the aim of photodiode application. Under dark condition, the diode shows about four orders in magnitude rectification rate and diode illumination results in efficient rectification with increase in intensity. The analysis of current-voltage curve results a non-ideal diode characteristics according to the thermionic emission model due to the existence of parasitic resistances and interface states. The measured current-voltage values are used to extract the barrier height and ideality factor under dark and illumination conditions. Under illumination, photo-generated carriers contribute to the current flow and linear photo-conductivity behavior in photo-current measurements with illumination shows the possible use of hybrid PCBM:ZnO layer in Si-based photodiodes. In addition, change in the series and shunt resistance values under illumination is found to be effective in this light-sensing behavior of the diode. This characteristic is also observed from the typical on/off illumination switching behavior for the photodiodes in transient photo-current, photo-capacitance and photo-conductance measurements with the quick response to the illumination. The deviations from ideality are also discussed by means of distribution of interface states and series resistance depending on the applied frequency and bias voltage. (C) 2020 Elsevier B.V. All rights reserved.

