Electrical properties of Al/PCBM:ZnO/p-Si heterojunction for photodiode application

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this paper, the electrical characteristics of spin-coated PCBM:ZnO interlayered Al/PCBM:ZnO/Si diode are investigated under the aim of photodiode application. Under dark condition, the diode shows about four orders in magnitude rectification rate and diode illumination results in efficient rectification with increase in intensity. The analysis of current-voltage curve results a non-ideal diode characteristics according to the thermionic emission model due to the existence of parasitic resistances and interface states. The measured current-voltage values are used to extract the barrier height and ideality factor under dark and illumination conditions. Under illumination, photo-generated carriers contribute to the current flow and linear photo-conductivity behavior in photo-current measurements with illumination shows the possible use of hybrid PCBM:ZnO layer in Si-based photodiodes. In addition, change in the series and shunt resistance values under illumination is found to be effective in this light-sensing behavior of the diode. This characteristic is also observed from the typical on/off illumination switching behavior for the photodiodes in transient photo-current, photo-capacitance and photo-conductance measurements with the quick response to the illumination. The deviations from ideality are also discussed by means of distribution of interface states and series resistance depending on the applied frequency and bias voltage. (C) 2020 Elsevier B.V. All rights reserved.

Description

Yıldız, Dilber Esra/0000-0003-2212-199X; YILDIRIM, Murat/0000-0002-4541-3752; Kocyigit, Adem/0000-0002-8502-2860

Keywords

Photodiode, PCBM:ZnO, Spin coating, Electrical properties

Turkish CoHE Thesis Center URL

Fields of Science

Citation

62

WoS Q

Q1

Scopus Q

Source

Volume

827

Issue

Start Page

End Page

Collections