Search Results

Now showing 1 - 10 of 43
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Low-Temperature Thermoluminescence in Layered Structured Ga0.75in0.25< Single Crystals
    (Elsevier Science Sa, 2012) Isik, M.; Bulur, E.; Gasanly, N. M.
    Defect centers in Ga0.75In0.25Se single crystals have been studied performing the thermoluminescence measurements in the temperature range of 10-300 K. The observed glow curves were analyzed using curve fitting, initial rise, and different heating rate methods to determine the activation energies of the defect centers. Thermal cleaning process has been applied to decompose the overlapped curves. Four defect centers with activation energies of 9, 45,54 and 60 meV have been found as a result of the analysis. The capture cross sections and attempt-to-escape frequencies of the defect centers were also found using the curve fitting method under the light of theoretical predictions. The first order kinetics for the observed glow curve was revealed from the consistency between the theoretical predictions for slow retrapping and experimental results. Another indication of negligible retrapping was the independency of peak position from concentration of carriers trapped in defect levels. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements
    (Elsevier, 2012) Isik, M.; Gasanly, N. M.
    The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Determination of Trapping Parameters of Thermoluminescent Glow Peaks of Semiconducting Tl2ga2< Crystals
    (Pergamon-elsevier Science Ltd, 2015) Isik, M.; Yildirim, T.; Gasanly, N. M.
    Thermoluminescence (TL) properties of Tl2Ga2S3Se layered single crystals were researched in the temperature range of 290-770 K. U glow curve exhibited two peaks with maximum temperatures of similar to 373 and 478 K. Curve fitting, initial rise and peak shape methods were used to determine the activation energies of the trapping centers associated with these peaks. Applied methods were in good agreement with the energies of 780 and 950 meV. Capture cross sections and attempt-to-escape frequencies of the trapping centers were reported. An energy level diagram showing transitions in the band gap of the crystal was plotted under the light of the results of the present work and previously reported papers on photoluminescence, thermoluminescence and thermally stimulated current measurements carried out below room temperature. (C) 2015 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Electronic, Optical and Thermodynamic Characteristics of Bi12sio20 Sillenite: First Principle Calculations
    (Elsevier Science Sa, 2021) Isik, M.; Surucu, G.; Gencer, A.; Gasanly, N. M.
    Bi12XO20 (X: Si, Ge, Ti) ternary semiconducting compounds are known as sillenites and take a remarkable attention thanks to their attractive photorefractive properties. The present paper reports electronic, optical and thermodynamic characteristics of Bi12SiO20 by means of density functional theory (DFT) calculations. The crystalline structure of the compound was revealed as cubic with lattice constant of 10.135 angstrom. XRD pattern obtained from DFT calculations were compared with experimental data and there is a good consistency between them. The electronic band structure and density of state plots were presented in detail. The band gap energy of the compound was determined from electronic band structure and spectra of optical constants. The spectral dependencies of real and imaginary components of dielectric function, refractive index, extinction coefficient, absorption coefficient and loss function were plotted in the 0-12 eV spectral range. The revealed structural, electronic and optical characteristics were discussed taking into account the previously reported theoretical and experimental studies on the Bi12SiO20 sillenite.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Structural, Electrical and Anisotropic Properties of Tl4se3< Chain Crystals
    (Pergamon-elsevier Science Ltd, 2009) Qasrawi, A. F.; Gasanly, N. M.
    The structure, the anisotropy effect on the current transport mechanism and the space charge limited current in Tl4Se3S chain crystals have been studied by means of X-ray diffraction, electrical conductivity measurements along and perpendicular to the crystal's c-axis and the current voltage characteristics. The temperature-dependent electrical conductivity analysis in the region of 150-400 K, revealed the domination of the thermionic emission of charge carriers over the chain boundaries above 210 and 270 K along and perpendicular to the c-axis, respectively. Below these temperatures, the variable range hopping is dominant. At a consistent temperature range, the thermionic emission analysis results in conductivity activation energies of 280 and 182 meV, along and perpendicular to the c-axis, respectively. Likewise, the hopping parameters are altered significantly by the conductivity anisotropy. The current-voltage characteristics revealed the existence of hole trapping state being located at 350 meV above the valence band of the crystal. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 28
    Citation - Scopus: 30
    Composition-tuned band gap energy and refractive index in GaSxSe1-x layered mixed crystals
    (Elsevier Science Sa, 2017) Isik, Mehmet; Gasanly, Nizami
    Transmission and reflection measurements on GaSxSe1-x mixed crystals (0 <= x <= 1) were carried out in the 400-1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaSxSe1-x mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Thermally Stimulated Current Measurements in Undoped Ga3inse4< Single Crystals
    (Pergamon-elsevier Science Ltd, 2011) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    The trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0 x 10(-25) cm(2) with concentration of 1.4 x 10(17) cm(-3). (C) 2011 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 15
    Structural and Optical Properties of Ga2se3< Crystals by Spectroscopic Ellipsometry
    (Springer, 2019) Guler, I.; Isik, M.; Gasanly, N. M.; Gasanova, L. G.; Babayeva, R. F.
    Optical and crystalline structure properties of Ga2Se3 crystals were analyzed utilizing ellipsometry and x-ray diffraction (XRD) experiments, respectively. Components of the complex dielectric function (epsilon=epsilon(1)+i epsilon(2)) and refractive index (N=n+ik) of Ga2Se3 crystals were spectrally plotted from ellipsometric measurements conducted from 1.2eV to 6.2eV at 300K. From the analyses of second-energy derivatives of epsilon(1) and epsilon(2), interband transition energies (critical points) were determined. Absorption coefficient-photon energy dependency allowed us to achieve a band gap energy of 2.02eV. Wemple and DiDomenico single effective oscillator and Spitzer-Fan models were accomplished and various optical parameters of the crystal were reported in the present work.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Trapping Centers and Their Distribution in Tl2ga2< Layered Single Crystals
    (Pergamon-elsevier Science Ltd, 2009) Isik, M.; Gasanly, N. M.
    Thermally stimulated current (TSC) measurements with current flowing perpendicular to the layers were carried out on Tl2Ga2Se3S layered single crystals in the temperature range of 10-260K. The experimental data were analyzed by using different methods, such as curve fitting, initial rise and isothermal decay methods. The analysis revealed that there were three trapping centers with activation energies of 12, 76 and 177 meV. It was concluded that retrapping in these centers was negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. The capture cross section and the concentration of the traps have been also determined. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light illumination temperatures. This experimental technique provided values of 10 and 88 meV/decade for the traps distribution related to two different trapping centers. (C) 2009 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 2
    Determination of Optical Constants and Temperature Dependent Band Gap Energy of Gas0.25se0.75< Single Crystals
    (Natl inst Optoelectronics, 2017) Isik, M.; Gasanly, N.
    Optical properties of GaS0.25Se0.75 single crystals were investigated by means of temperature -dependent transmission and room temperature reflection experiments. Derivative spectrophotometry analysis showed that indirect band gap energies of the crystal increase from 2.13 to 2.26 eV as temperature is decreased from 300 to 10 K. Temperature dependence of band gap energy was fitted under the light of theoretical expression. The band gap energy change with temperature and absolute zero value of the band gap energy were found from the analyses. The Wemple-DiDomenico single effective oscillator model and Sellmeier oscillator model were applied to the spectral dependence of room temperature refractive index to find optical parameters of the GaS0.25Se0.75 crystal. Chemical composition of the crystal was determined using the energy dispersive spectral measurements.