Search Results

Now showing 1 - 7 of 7
  • Master Thesis
    Rc8660 Ses Sentezleyici ile Türkçe Metinden Konuşma Sentezleme
    (2015) Karamehmet, Timur; Tora, Hakan; Uslu, İbrahim Baran
    Bu çalışma, metinden konuşma sentezleme problemini ve RC8660 gömülü sisteminin Türkçe'ye uyarlanması için yapılan çalışmaları incelemektedir. Tezde, İngilizce fonemlerle yüklü gelen RC8660 kartının Türkçe konuşma sentezlemesi hedeflenmiştir. Bu amaçla, öncelikle İngilizce'de bulunan fonemlere karşılık gelen Türkçe fonemler tanımlanmıştır. Bunun için IPA: International Phonetic Alphabet'den yararlanılmıştır. Türkçe ve İngilizce'nin hece yapıları farklı olduğu için, kartın sahip olduğu metin ve fonem modlarından yararlanılarak yeni bir harici sözlük tanımlamaya ihtiyaç duyulmuştur. Doğru heceleme için gerekli kurallar, oluşturulan bu sözlüğe tek tek eklenmiştir. RC8660'ın bir konuşmacı doğallığında Türkçe konuşması için vurgu ve tonlama kuralları da tanımlanmıştır. Üretilen konuşmanın düzgün ve anlaşılabilir olması amacıyla karakterler ve sayılar için farklı fonemler kullanılmıştır. Kartın yazılımı olan RC Studio'da yer alan hız, ifade, perde, formant frekansı, ton, gecikme ve telaffuz ayarlarının konuşma üzerindeki etkileri de test edilmiştir. Üretilen konuşmanın kalitesi ortalama görüş skoru (MOS) testi ile ölçülmüştür.
  • Master Thesis
    Platformdan Bağımsız Bir Otomatik Konuşma Tanıma Sisteminin Tasarlanması ve Uygulanması
    (2012) Urgun, Doğan; Erden, Abdulkadir; Tora, Hakan
    Bu tez içerisinde, 50 kelime ile sınırlı bir ayrık kelimeli hece tabanlı konuşma tanıma sistemi tasarlanmış ve test edilmiştir. Türkçenin sondan eklemeli yapısından dolayı kelime tabanlı bir yaklaşımın konuşma tanıma performansı üzerinde negatif etkisi olacaktır. Bu sebepten ötürü fonem tabanlı yapılar konuşma tanıma içinde geniş biçimde kullanılmaktadır ancak fonemlerin küçük boyutları onların tanınmasını zorlaştırmaktadır. Bu nedenle, bu tezde hece tabanlı bir yaklaşımın takip edilmesine karar verilmiştir.Bu tez kapsamında bir hece tespit etme algoritması tasarlanmıştır. Mel Frekansı Kepstral Katsayıları özellik çıkarmak üzere seçilmiştir ve Yapay Sinir Ağları hecelerin sınıflandırılmasında kullanılmıştır. Son olarak, Yapay Sinir Ağlarının sonuçları hece tabanlı sistem için tasarlanan dil modeli içerisinde işlenmiştir.Tasarlanan sistem 5 farklı kişiden 50 kelime için alınan 10 örnekle eğitilmiş ve test edilmiştir. Sistem yaklaşık %85 konuşma tanıma performansı göstermiştir. Ayrıca sistem eğitilmemiş bir konuşmacı tarafından da test edilmiş ve %75 konuşma tanıma performansı elde edilmiştir.
  • Master Thesis
    Frekans Alanında Görüntü Sınıflandırma için Konvolüsyonel Sinir Ağlarının Uygulanması
    (2024) Dağı, Göktuğ Erdem; Gökçay, Erhan; Tora, Hakan
    Bu tezde, Evrişimsel Sinir Ağları (CNN'ler) son yıllarda çeşitli görüntü işleme ve bilgisayarlı görme görevlerinde dikkate değer başarılar elde etmiştir. Geleneksel CNN'ler doğrudan uzaysal alan görüntüleri üzerinde çalışır. Bununla birlikte, Hızlı Fourier Dönüşümü (FFT) yoluyla elde edilen görüntülerin frekans alanı gösterimi, piksel değerlerinin ilişkisizleştirilmesi ve hesaplama karmaşıklığında potansiyel azalma gibi benzersiz avantajlar sunar. Bu tez, görüntü sınıflandırmasını ve tanıma doğruluğunu artırmak için FFT ile dönüştürülmüş görüntülerin CNN algoritmalarına girdi olarak kullanılmasının etkilerini araştırmayı amaçlamaktadır. Araştırma, FFT'nin teorik temellerinin ve özelliklerinin kapsamlı bir incelemesiyle başlıyor. Daha sonra CNN'ler için ön işleme ardışık düzenlerinde FFT'nin entegrasyonunu araştırıyor. Giriş görüntülerini uzamsal alandan frekans alanına dönüştürerek, CNN'lerin en önemli frekans bileşenlerine odaklanarak daha verimli öğrenebileceğini, dolayısıyla yakınsama oranlarını ve genel performansı potansiyel olarak iyileştirebileceğini varsayıyoruz. Bunun etkinliğini değerlendirmek için CIFAR-10 (Kanada İleri Araştırma Enstitüsü), MNIST (Modifiye Ulusal Standartlar ve Teknoloji Enstitüsü)-Digits ve MNIST-Fashion dahil olmak üzere çeşitli kıyaslama veri setleri kullanılarak deneyler gerçekleştirildi. yaklaşmak. FFT ile dönüştürülmüş görüntüler çeşitli CNN mimarilerine beslendi ve sonuçlar, geleneksel uzaysal alan girdileri kullanılarak elde edilenlerle karşılaştırıldı. Sınıflandırma doğruluğu, eğitim süresi ve hesaplamalı kaynak kullanımı gibi ölçümler titizlikle analiz edildi. Sonuçlar, FFT tabanlı ön işlemenin, özellikle veri kümelerinin yüksek frekanslı gürültü veya gereksiz bilgi içerdiği senaryolarda, sınıflandırma doğruluğunda iyileştirmelere yol açabileceğini göstermektedir. Ancak faydaların farklı veri kümeleri ve ağ mimarileri arasında farklılık göstermesi, FFT ön işlemenin etkililiğinin bağlama bağlı olabileceğini düşündürmektedir. Sonuç olarak bu tez, FFT ön işlemesinin CNN iş akışlarına dahil edilmesinin görüntü işleme görevlerini geliştirme konusunda umut vaat ettiğini göstermektedir. Bulgular, hem uzaysal hem de frekans alanı bilgisinden yararlanan hibrit modellerin geliştirilmesi ve FFT tabanlı tekniklerin diğer sinir ağı türlerine ve makine öğrenimi algoritmalarına uygulanması da dahil olmak üzere gelecekteki araştırmalar için yollar önermektedir. Bu çalışma, bilgisayarlı görme alanını geliştirmek için frekans alanı analizinin derin öğrenme metodolojileriyle nasıl sinerjik olarak entegre edilebileceğinin daha geniş bir şekilde anlaşılmasına katkıda bulunmaktadır.
  • Master Thesis
    Doku ve Şekil Bazlı Özellikler Kullanarak Yüz İfadesi Tanımlama
    (2016) Gül, Nuray; Tora, Hakan
    Son zamanlarda, yüz ifadesi tanıma sistemleri (YİT), insan-makine etkileşimi uygulamaları (İME) için önemli bir role sahip olmuştur. Mevcut olan birçok sistemde, bir his tanımlanırken ya tüm yüze ait özellikler ya da yüzün bazı bölgelerine ait özellikler birleştirilerek kullanılmıştır. Bu çalışma ise her duygu tanımlanırken sadece bir uygun bölgenin kullanılmasını önermektedir ve böylece bu bölgelerin ayrı ayrı hisler üzerindeki etkilerinin ne olduğunu göstermeyi amaçlamaktadır. Sunulan tasarımda, Şaşkın ve Mutlu hislerinin ağız bölgesinin şekil özellikleri kullanılarak, diğer taraftan Korku, Öfke ve İğrenme hislerinin göz bölgesinin doku özellikleri kullanılarak tanımlanması hedeflenmiştir. Bu sebeple Fourier Tanımlayıcıları (FT) ve Yerel İkili Örüntüler (YİÖ) özellik vectörleri olarak çıkarılmış ve bu özellikler Yapay Sinir Ağları (YSA) kullanılarak sınıflandırılmıştır. Sistem, genişletilmiş Cohn-Kanade Veritabanı (CK+) üzerinde eğitilmiş ve tüm sistem için yaklaşık %88,9 başarım oranı elde edilmiştir.
  • Doctoral Thesis
    El Yazısı Rakam Tanıma için Yapay Sinir Ağları Tabanlı Öznitelik Çıkarma
    (2017) Pirim, Mine Altınay Günler; Tora, Hakan; Öztoprak, Kasım
    Bu tezde, yarı eğitilmiş sinir ağlarının gizli katman çıktı ağırlıklarının öznitelik vektörü olarak kullanılabileceği önerilmektedir. Sinir ağları örüntü tanımada sınıflandırma yapmayı sağlayan bir algotimadır. Bu çalışmada bu gerçeğe ek olarak, yarı eğitilmiş sinir ağlarının gizli katman çıktı vektörlerinin görüntünün öznitelikleri olarak kullanılmasında bir araç olarak kullanılabileceği gösterilmiştir. Sistem ana olarak 3 basamaktan oluşmaktadır: önişlemci, öznitelik çıkarıcı ve sınıflandırıcı. Herbir deneyde sadece sınıflandırıcı katmanı değişmektedir diğer iki katman tüm deneyler için default olarak kullanılmaktadır. Sıfılanırıcı olarak destekçi vektör makinaları, sinir ağları ve Öklid uzaklığı sınıflanıdırıclarından yararlanılmıştır. Önerilen sistem performansını değerlendilmesi MNIST ve USPS denektaşı verikümeleri üzerinde yapılmıştır.
  • Master Thesis
    Araba plaka tanıma
    (2009) Bora, Kayhan; Tora, Hakan; Çağıltay, Nergiz Ercil
    Hızlı gelisen teknoloji ile beraber ülkelerdeki araç sayısı artmıstır. Araçsayısının artısına paralel olarak araçların tanınması gereksinimi de artmıstır.Güvenlik, otomatik geçis sistemleri, otoyollarda hız tespiti, ısık ihlali gibidurumlarda araçların tanınması ihtiyacı doğmustur. Araç plaka tanıma sistemi üç anakonudan olusmaktadır. Sayısal bir görüntüden plakanın bulunması, bulunan plakagörüntüsünden karakterlerin ayrıstırılması, ayrıstırılan karakterin tanınmasıdır. Butez çalısmasında ikinci ve üçüncü konular üzerine bir çalısma yapılmıstır. Öncekiyapılan çalısmalar incelendiğinde daha çok yapay sinir ağları ile karakter tanınmayaçalısıldığı görülmüstür. Bu çalısmada yapay sinir ağları veya karmasık matematikselislemler yerine insan gözü ile karakterin nasıl algılandığına dikkat edilmistir. Plakagörüntüsü gri seviyeye indirgenmis, esik değeri hesaplanmıs ve ikili sistemeçevrilmistir. Plaka görüntüsü ikili sisteme çevrildikten sonra dikey ve yataydoğrultularda taranarak karakterlerin sınırları bulunmustur. Bulunan karakterlersoldan sağa, sağdan sola, yukarıdan asağıya, asağıdan yukarı taranarak her birkarakter için özellik sınıfları olusturulmustur. Daha önceden karakterler içinhazırlanmıs olan özellik sınıfları veritabanı ile karakterin özellik sınıfıkarsılastırılmıstır. Karakterin diğer karakterlere benzeme oranı kullanıcıyagösterilmistir. Çalısma esnasında T.C. araç plakaları kullanılmıstır.Anahtar Kelimeler : Araba Plakası Tanıma
  • Doctoral Thesis
    Arnold Cat Dönüsümünün Genelleştirilmesi ve Görüntü Steganografisinde Kesir Tabanlı Gömme
    (2019) Buker, Mohamed M.m.; Tora, Hakan; Gökçay, Erhan
    Veri iletişiminin hızlı gelişimi ve ağlar aracılığıyla iletilen bilgilerin artması, değiş tokuş edilen bilgileri korumanın yeni yollarını bulmayı çok önemli kılmaktadır. Şifreleme günümüzde bu alanda en yaygın kullanılan yöntemlerden biridir. Steganografi, iletilen bilgilerin yalnızca şifrelenmekten ziyade herkes tarafından görünmez olduğu araştırma alanıdır. Steganografinin arkasındaki fikir bilginin varlığını gizlemektir. Bir üçüncü taraf bilgi olduğunu bildiği sürece, şifreli olsun ya da olmasın, bilgi risk altında olacaktır. Bu tezde, iki güvenlik seviyeli bir steganografik model sunuyoruz. İlk olarak, gizli görüntü Genelleştirilmiş Arnold CAT Haritamız (ACM) kullanılarak karıştırılmıştır. Daha sonra, karıştırılmış görüntü, dönüşüm bölgesinde hem Ayrık Dalgacık Dönüşümü (DWT) hem de Kaldırılmış Dalgacık Dönüşümü (LWT) ile Kesir Tabanlı Gömme Tekniğimizi (FBE) kullanarak başka bir görüntünün içine gömülür. Modelimizin verimliliği, referans renkli görüntüler üzerinde test edildi. Tepe Sinyal Gürültü Oranı (PSNR), Ortalama Kare Hatası (MSE), Yapısal Benzerlik (SSIM) ve Korelasyon değerleri hesaplandı. Sonuçlar, Genelleştirilmiş ACM'mizin, ACM'nin standart ve değiştirilmiş versiyonlarına kıyasla daha sağlam olduğunu göstermektedir. Aynı zamanda, yeni FBE tekniğimizin sonuçları, PSNR ve MSE değerleri ile ilgili diğer tekniklerden daha iyi performans göstermektedir.