Arnold CAT dönüsümünün genelleştirilmesi ve görüntü steganografisinde kesir tabanlı gömme

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Veri iletişiminin hızlı gelişimi ve ağlar aracılığıyla iletilen bilgilerin artması, değiş tokuş edilen bilgileri korumanın yeni yollarını bulmayı çok önemli kılmaktadır. Şifreleme günümüzde bu alanda en yaygın kullanılan yöntemlerden biridir. Steganografi, iletilen bilgilerin yalnızca şifrelenmekten ziyade herkes tarafından görünmez olduğu araştırma alanıdır. Steganografinin arkasındaki fikir bilginin varlığını gizlemektir. Bir üçüncü taraf bilgi olduğunu bildiği sürece, şifreli olsun ya da olmasın, bilgi risk altında olacaktır. Bu tezde, iki güvenlik seviyeli bir steganografik model sunuyoruz. İlk olarak, gizli görüntü Genelleştirilmiş Arnold CAT Haritamız (ACM) kullanılarak karıştırılmıştır. Daha sonra, karıştırılmış görüntü, dönüşüm bölgesinde hem Ayrık Dalgacık Dönüşümü (DWT) hem de Kaldırılmış Dalgacık Dönüşümü (LWT) ile Kesir Tabanlı Gömme Tekniğimizi (FBE) kullanarak başka bir görüntünün içine gömülür. Modelimizin verimliliği, referans renkli görüntüler üzerinde test edildi. Tepe Sinyal Gürültü Oranı (PSNR), Ortalama Kare Hatası (MSE), Yapısal Benzerlik (SSIM) ve Korelasyon değerleri hesaplandı. Sonuçlar, Genelleştirilmiş ACM'mizin, ACM'nin standart ve değiştirilmiş versiyonlarına kıyasla daha sağlam olduğunu göstermektedir. Aynı zamanda, yeni FBE tekniğimizin sonuçları, PSNR ve MSE değerleri ile ilgili diğer tekniklerden daha iyi performans göstermektedir.
The rapid development of data communication, and the increased amount of information that are communicated via networks, make it very important to find new ways to protect exchanged information. Encryption is one of the most widely used methods nowadays in this area. Steganography is a recent field of research in which the communicated information is being invisible to anyone rather than being only encrypted. The idea behind steganography is to hide the existence of information itself. As long as a third party knew there were information, whether encrypted or not encrypted, the information will be at risk. In this thesis, we present a steganographic model with two levels of security. First, the secret image is scrambled using our Generalized Arnold Cat Map (ACM). Then, the scrambled image is embedded into another image using our Fraction Based Embedding Technique (FBE) in the transform domain using both Discrete Wavelet Transform (DWT) and Lifted Wavelet Transform (LWT). The efficiency of our model was tested on benchmark color images. Peak Signal-to-Noise Ratio (PSNR), Mean Square Error (MSE), Structural Similarity (SSIM) and correlation values are calculated. Results show that our Generalized ACM is more robust compared to standard and modified versions of ACM. At the same time, results of our new FBE technique performs better than those of other techniques regarding to PSNR and MSE values.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

107