Doku ve Şekil Bazlı Özellikler Kullanarak Yüz İfadesi Tanımlama

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Son zamanlarda, yüz ifadesi tanıma sistemleri (YİT), insan-makine etkileşimi uygulamaları (İME) için önemli bir role sahip olmuştur. Mevcut olan birçok sistemde, bir his tanımlanırken ya tüm yüze ait özellikler ya da yüzün bazı bölgelerine ait özellikler birleştirilerek kullanılmıştır. Bu çalışma ise her duygu tanımlanırken sadece bir uygun bölgenin kullanılmasını önermektedir ve böylece bu bölgelerin ayrı ayrı hisler üzerindeki etkilerinin ne olduğunu göstermeyi amaçlamaktadır. Sunulan tasarımda, Şaşkın ve Mutlu hislerinin ağız bölgesinin şekil özellikleri kullanılarak, diğer taraftan Korku, Öfke ve İğrenme hislerinin göz bölgesinin doku özellikleri kullanılarak tanımlanması hedeflenmiştir. Bu sebeple Fourier Tanımlayıcıları (FT) ve Yerel İkili Örüntüler (YİÖ) özellik vectörleri olarak çıkarılmış ve bu özellikler Yapay Sinir Ağları (YSA) kullanılarak sınıflandırılmıştır. Sistem, genişletilmiş Cohn-Kanade Veritabanı (CK+) üzerinde eğitilmiş ve tüm sistem için yaklaşık %88,9 başarım oranı elde edilmiştir.
Recently, facial expression recognition (FER) systems have a significant role to play in the human-computer interaction (HCI) applications. In many existing systems, either the features of the whole face or the combination of the features extracted from some regions of face are used while defining an emotion. This study suggests using just one appropriate region for every single expression identification to demonstrate what is the effect of these regions on the feelings separately. In the proposed design, it's aimed to identify Surprised and Happy emotions by using shape features of mouth region on the other hand the texture features of the eye region is used for Fear, Anger and Disgust emotions. Therefore, Fourier Descriptors (FD) and Local Binary Patterns (LBP) are extracted as feature vectors and these features are classified by using neural networks (NN). The system was trained on the Extended Cohn-Kanade Dataset (CK+) and achieved accuracy rate is almost 88,9% for the overall system.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Science and Technology, Grafik desen tanıma, Electrical and Electronics Engineering, Sayısal görüntü işleme, Graphical pattern recognition, Digital image processing, Yapay sinir ağları, Artificial neural networks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

86

Collections

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo