Doku ve şekil bazlı özellikler kullanarak yüz ifadesi tanımlama

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Son zamanlarda, yüz ifadesi tanıma sistemleri (YİT), insan-makine etkileşimi uygulamaları (İME) için önemli bir role sahip olmuştur. Mevcut olan birçok sistemde, bir his tanımlanırken ya tüm yüze ait özellikler ya da yüzün bazı bölgelerine ait özellikler birleştirilerek kullanılmıştır. Bu çalışma ise her duygu tanımlanırken sadece bir uygun bölgenin kullanılmasını önermektedir ve böylece bu bölgelerin ayrı ayrı hisler üzerindeki etkilerinin ne olduğunu göstermeyi amaçlamaktadır. Sunulan tasarımda, Şaşkın ve Mutlu hislerinin ağız bölgesinin şekil özellikleri kullanılarak, diğer taraftan Korku, Öfke ve İğrenme hislerinin göz bölgesinin doku özellikleri kullanılarak tanımlanması hedeflenmiştir. Bu sebeple Fourier Tanımlayıcıları (FT) ve Yerel İkili Örüntüler (YİÖ) özellik vectörleri olarak çıkarılmış ve bu özellikler Yapay Sinir Ağları (YSA) kullanılarak sınıflandırılmıştır. Sistem, genişletilmiş Cohn-Kanade Veritabanı (CK+) üzerinde eğitilmiş ve tüm sistem için yaklaşık %88,9 başarım oranı elde edilmiştir.
Recently, facial expression recognition (FER) systems have a significant role to play in the human-computer interaction (HCI) applications. In many existing systems, either the features of the whole face or the combination of the features extracted from some regions of face are used while defining an emotion. This study suggests using just one appropriate region for every single expression identification to demonstrate what is the effect of these regions on the feelings separately. In the proposed design, it's aimed to identify Surprised and Happy emotions by using shape features of mouth region on the other hand the texture features of the eye region is used for Fear, Anger and Disgust emotions. Therefore, Fourier Descriptors (FD) and Local Binary Patterns (LBP) are extracted as feature vectors and these features are classified by using neural networks (NN). The system was trained on the Extended Cohn-Kanade Dataset (CK+) and achieved accuracy rate is almost 88,9% for the overall system.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Elektrik ve Elektronik Mühendisliği, Computer Engineering and Computer Science and Control, Science and Technology, Grafik desen tanıma, Electrical and Electronics Engineering, Sayısal görüntü işleme, Graphical pattern recognition, Digital image processing, Yapay sinir ağları, Artificial neural networks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

86