Search Results

Now showing 1 - 10 of 11
  • Article
    Citation - WoS: 139
    Citation - Scopus: 140
    CaXH3 (X = Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications
    (Wiley, 2020) Surucu, Gokhan; Gencer, Aysenur; Candan, Abdullah; Gullu, Hasan H.; Isik, Mehmet
    Hydrogen storage is one of the attractive research interests in recent years due to the advantages of hydrogen to be used as energy source. The studies on hydrogen storage applications focus mainly on investigation of hydrogen storage capabilities of newly introduced compounds. The present paper aims at characterization of CaXH3 (X: Mn, Fe, or Co) perovskite-type hydrides for the first time to understand their potential contribution to the hydrogen storage applications. CaXH3 compounds have been investigated by density functional theory studies to reveal their various characteristics and hydrogen storage properties. CaXH3 compounds have been optimized in cubic crystal structure and the lattice constants of studied compounds have been obtained as 3.60, 3.50, and 3.48 angstrom for X: Mn, Fe, and Co compounds, respectively. The optimized structures have negative formation enthalpies pointing out that studied compounds are thermodynamically stable and could be synthesized experimentally. The gravimetric hydrogen storage densities of X: Mn, Fe, and Co compounds were found in as 3.09, 3.06, and 2.97 wt%, respectively. The revealed values for hydrogen storage densities indicate that CaXH3 compounds may be potential candidates for hydrogen storage applications. Moreover, various mechanical parameters of interest compounds like elastic constants, bulk modulus, and Poisson's ratio have been reported throughout the study. These compounds were found mechanically stable with satisfying Born stability criteria. Further analyses based on Cauchy pressure and Pugh criterion, showed that they have brittleness nature and relatively hard materials. In addition, the electronic characteristics, band structures, and associated partial density of states of CaXH3 hydrides have been revealed. The dynamic stability behavior of them was verified based on the phonon dispersion curves.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Low Temperature Thermoluminescence of Gd2o3< Nanoparticles Using Various Heating Rate and tmax< - texc< Methods
    (Elsevier, 2019) Delice, Serdar; Isik, Mehmet; Gasanly, Nizami M.
    Thermoluminescence (FL) measurements for Gd2O3 nanoparticles were carried out for various heating rates between 0.3 and 0.8 K/s at low temperatures (10-280 K). TL spectrum exhibited two observable and one faint peaks in the temperature region of 10-100 K, and four peaks in the temperature region of 160-280 K. Heating rate analysis was achieved to understand the behaviors of trap levels. It was seen that the peak maximum temperatures and TL intensities of all peaks increase with increasing heating rate. This behavior was ascribed to anomalous heating rate effect. T-max - T(exc )analysis was accomplished for TL, peaks at relatively higher temperature region to reveal the related traps depths. T-max - T-exc plot presented a staircase structure indicating that the TL glow curve is composed of well separated glow peaks. Mean activation energies of trapping centers corresponding to these separated peaks were found as 0.43, 0.50, 0.58 and 0.80 eV.
  • Article
    Citation - WoS: 21
    Citation - Scopus: 20
    Nonlinear Optical Absorption Characteristics of Pbmoo4 Single Crystal for Optical Limiter Applications
    (Elsevier, 2022) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, Ayhan
    Molybdate materials take great interest due to their photocatalytic and optoelectronic applications. In this report, PbMoO4 single crystal, one of the member of molybdate materials, is grown by Czochralski technique and the change of nonlinear absorption characteristic depending on the input intensity was reported. Linear absorption analysis revealed the band gap energy and Urbach energy as to be 3.12 and 0.52 eV, respectively. Nonlinear absorption characteristics of the PbMoO4 single crystal was examined with the open aperture (OA) Z-scan experiments at 532 nm excitation wavelength under various input intensities. Fitting results of the OA Z-scan experiments indicated that PbMoO4 single crystal has nonlinear absorption (NA) behavior, and NA coefficient (beta(eff)) increased from 7.11 x 10(-8) to 1.96 x 10(-7) m/W with increasing input intensity. This observation was associated with the increase of the contribution of the free carrier absorption to the NA with the generation of more excited electrons with increasing input intensity. At the 532 nm excitation wavelength (2.32 eV), the dominant mechanisms were revealed as one photon and free carrier absorptions. The optical limiting threshold of the PbMoO4 single crystal was obtained to be 4.91 mJ/cm(2). The reported results indicated that PbMoO4 single crystal can be a good optical limiter in the visible wavelength region due to its effective NA behavior.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Experimental and Theoretical Investigation of the Mechanical Characteristics of Sillenite Compound: Bi12geo20<
    (Elsevier Science Sa, 2021) Surucu, Gokhan; Isik, Mehmet; Gencer, Aysenur; Gasanly, Nizami
    The present study reports the mechanical and elastic characteristics of Bi12GeO20 (BGO) compound by experimental nanoindentation measurements and density functional theory (DFT) calculations. X-ray diffraction pattern of BGO was plotted and revealed diffraction peaks were associated with Miller indices of cubic crystalline structure with lattice constant of a = 10.304 angstrom. Two- and three-dimensional representations of Young's modulus, linear compressibility, shear modulus and Poisson's ratio were presented according to DFT calculations. The calculated elastic constants pointed out the mechanically stable and anisotropic behavior of the BGO. The hardness and Young's modulus ranges of the BGO calculated from DFT studies were found as 3.7-6.3 GPa and 61.7-98.9 GPa, respectively. Hardness and Young's modulus of BGO single crystal were also obtained by analyzing force-dependent nanoindentation experimental data. It was observed that hardness and Young's modulus decrease with increase of load in the low applied loads and then reaches saturation in the high applied loads. This behavior is known as indentation size effect. True hardness value was determined from proportional specimen resistance model as 4.1 GPa. The force independent region presented the Young's modulus as 114 GPa. (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Structural and Optical Properties of Thermally Evaporated Ga-In Thin Films
    (World Scientific Publ Co Pte Ltd, 2014) Isik, Mehmet; Gullu, Hasan Huseyin
    In this paper, structural and optical properties of Ga-In-Se (GIS) thin films deposited by thermal evaporation technique have been investigated. The effect of annealing was also studied for samples annealed at temperatures between 300 degrees C and 500 degrees C. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy have been used for structural characterization. It was reported that increase of annealing temperature results with better crystallization and chemical composition of the films were almost same. Optical properties of the films were studied by transmission measurements in the wavelength range of 320-1100 nm. The direct bandgap transitions with energies in the range of 1.52 eV and 1.65 eV were revealed for the investigated GIS films. Photon energy dependence of absorption coefficient showed that there exist three distinct transition regions for films annealed at 400 degrees C and 500 degrees C. The quasicubic model was applied for these transitions to calculate crystal-field splitting and spin-orbit splitting energy values.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Excitation Wavelength Dependent Nonlinear Absorption Mechanisms and Optical Limiting Properties of Bi12sio20 Single Crystal
    (Elsevier, 2023) Dogan, Anil; Karatay, Ahmet; Isik, Mehmet; Pepe, Yasemin; Gasanly, Nizami; Elmali, Ayhan
    Nonlinear absorption mechanisms (NA), excitation wavelength dependence, and defect states of Bi12SiO20 (BSO) single crystal were investigated. The band gap and Urbach energies were found to be 2.51 and 0.4 eV from the absorption spectra. To evaluate the effect of excitation energy on the NA mechanism of the BSO single crystal, open aperture Z-scan experiment with 4 ns laser pulse at 532 and 1064 nm wavelengths with different intensities was performed. Obtained data were analyzed with a theoretical model considering the contributions of one photon absorption (OPA), two photon absorption (TPA) and free carrier absorption (FCA) to NA. The results indicated that the NA behavior decreased with increasing of the pump intensity as the defect states at around 2.32 eV by OPA at 532 nm, and TPA at 1064 nm excitations. The dominant NA mechanisms are OPA and sequential TPA at 532 nm as compared to the 1064 nm. A higher NA coefficient was obtained at 532 nm as compared to 1064 nm excitation. This observation was attributed to higher contribution of OPA at 532 nm even at lower input intensities compared to TPA contribution at 1064 nm. Onset optical limiting thresholds were found as 0.34 and 0.68 mJ/cm2 for 532 and 1064 nm input beams, respectively. In the light of the results, the BSO single crystal may be used as a saturable absorber or an optical limiter at convenient input intensity by effectively adjusting defect states and excitation wavelength.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 23
    Revealing the Effects of Defect States on the Nonlinear Absorption Properties of the Tlinsse and Tl2in2< Crystals in Near-Infrared Optical Limiting Applications
    (Amer Chemical Soc, 2024) Dogan, Anil; Karatay, Ahmet; Isik, Mehmet; Yildiz, Elif Akhuseyin; Gasanly, Nizami Mamed; Elmali, Ayhan
    The present study represents the effect of defect states on the nonlinear absorption and optical limiting performances of TlInSSe and Tl2In2S3Se single crystals with near-infrared excitations. The band gap energies were 2.2 and 2.22 eV, and the Urbach energies were 0.049 and 0.034 eV for TlInSSe and Tl2In2S3Se, respectively. The trapping time of localized defect states was found to be 8 ns by femtosecond transient absorption measurements. The analysis of open-aperture Z-scan data depends on two different fitting models to determine the effect of defect states on the nonlinear absorption (NA) properties of the studied crystals. Model 1 only considers two-photon absorption (TPA), while model 2 includes one-photon absorption (OPA), TPA, and free carrier absorption (FCA). The NA coefficients (ss(eff)) obtained from model 2 are higher than the values (ss) obtained from model 1 at the same intensities, revealing that defect states contribute to NA through OPA. The optical limiting properties of the TlInSSe and Tl2In2S3Se crystals were examined under 1064 nm wavelength excitation. The limiting thresholds were found to be 1.16 and 0.27 mJ/cm(2) at 29.8 GW/m(2) and 99.5 GW/m(2) input intensities, respectively. The results show that TlInSSe and Tl2In2S3Se crystals have promising potential for near-infrared optical limiting applications.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Temperature-Dependent Optical Properties of Tio2 Nanoparticles: a Study of Band Gap Evolution
    (Springer, 2023) Isik, Mehmet; Delice, Serdar; Gasanly, Nizami
    In this study, we present the first comprehensive investigation of the temperature-dependent band gap energy of anatase TiO2 nanoparticles, utilizing transmission measurements in the range of 10-300 K. X-ray diffraction pattern exhibited nine peaks related to tetragonal crystal structure. Scanning electron microscope image showed that the nanoparticles with the dimensions of 25-50 nm were found as micrometer sized agglomerated. When the spectrum obtained as a result of the transmission measurements was analyzed, it was seen that the band gap energy decreased from 3.29(5) to 3.26(6) eV as the temperature was increased from 10 to 300 K. Temperature-band gap dependence was analyzed using Varshni and O'Donnell-Chen optical models and optical parameters of the TiO2 nanoparticles like absolute zero band gap energy, rate of change of band gap with temperature and average phonon energy were reported.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Ellipsometric Study of Optical Properties of Gasxse1-x< Layered Mixed Crystals
    (Elsevier Science Bv, 2016) Isik, Mehmet; Gasanly, Nizami
    Spectroscopic ellipsometry measurements were performed on GaSxSe1-x mixed crystals (0 <= x <= 1) in the 1.2-6.2 eV range. Spectral dependence of optical parameters; real and imaginary components of pseudodielectric function, pseudorefractive index and pseudoextinction coefficient were reported in the present work. Critical point (CP) analyses on second-energy derivative spectra of the pseudodielectric function were accomplished to find the interband transition energies. The revealed energy values were associated with each other taking into account the fact that band gap energy of mixed crystals rises with increase in sulfur content. The variation of CP energies with composition (x) was also plotted. Peaks in the spectra of studied optical parameters and CP energy values were observed to be shifted to higher energy values as sulfur concentration is increased in the mixed crystals. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Optical Characterization of Ga2ses Layered Crystals by Transmission, Reflection and Ellipsometry
    (World Scientific Publ Co Pte Ltd, 2015) Isik, Mehmet; Gasanly, Nizami
    Optical properties of Ga2SeS crystals grown by Bridgman method were investigated by transmission, reflection and ellipsometry measurements. Analysis of the transmission and reflection measurements performed in the wavelength range of 400-1100 nm at room temperature indicated the presence of indirect and direct transitions with 2.28 eV and 2.38 eV band gap energies. Ellipsometry measurements were carried out in the 1.2-6.0 eV spectral region to get information about optical constants, real and imaginary parts of the pseudodielectric function. Moreover, the critical point (CP) analysis of the second derivative spectra of the pseudodielectric constant in the above band gap region was accomplished. The analysis revealed the presence of five CPs with energies of 3.87, 4.16, 4.41, 4.67 and 5.34 eV.