CaXH<sub>3</sub> (X = Mn, Fe, Co) perovskite-type hydrides for hydrogen storage applications

Loading...
Publication Logo

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 1%

Research Projects

Journal Issue

Abstract

Hydrogen storage is one of the attractive research interests in recent years due to the advantages of hydrogen to be used as energy source. The studies on hydrogen storage applications focus mainly on investigation of hydrogen storage capabilities of newly introduced compounds. The present paper aims at characterization of CaXH3 (X: Mn, Fe, or Co) perovskite-type hydrides for the first time to understand their potential contribution to the hydrogen storage applications. CaXH3 compounds have been investigated by density functional theory studies to reveal their various characteristics and hydrogen storage properties. CaXH3 compounds have been optimized in cubic crystal structure and the lattice constants of studied compounds have been obtained as 3.60, 3.50, and 3.48 angstrom for X: Mn, Fe, and Co compounds, respectively. The optimized structures have negative formation enthalpies pointing out that studied compounds are thermodynamically stable and could be synthesized experimentally. The gravimetric hydrogen storage densities of X: Mn, Fe, and Co compounds were found in as 3.09, 3.06, and 2.97 wt%, respectively. The revealed values for hydrogen storage densities indicate that CaXH3 compounds may be potential candidates for hydrogen storage applications. Moreover, various mechanical parameters of interest compounds like elastic constants, bulk modulus, and Poisson's ratio have been reported throughout the study. These compounds were found mechanically stable with satisfying Born stability criteria. Further analyses based on Cauchy pressure and Pugh criterion, showed that they have brittleness nature and relatively hard materials. In addition, the electronic characteristics, band structures, and associated partial density of states of CaXH3 hydrides have been revealed. The dynamic stability behavior of them was verified based on the phonon dispersion curves.

Description

SURUCU, Gokhan/0000-0002-3910-8575; Gencer, Aysenur/0000-0003-2574-3516; SURUCU, Gokhan/0000-0002-3910-8575; Candan, Abdullah/0000-0003-4807-3017

Keywords

density functional theory, dynamical properties, electronic properties, hydrogen storage properties, mechanical properties, perovskite-type hydrides

Fields of Science

02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
120

Source

International Journal of Energy Research

Volume

44

Issue

3

Start Page

2345

End Page

2354

Collections

PlumX Metrics
Citations

CrossRef : 14

Scopus : 135

Captures

Mendeley Readers : 73

SCOPUS™ Citations

142

checked on Feb 19, 2026

Web of Science™ Citations

142

checked on Feb 19, 2026

Page Views

4

checked on Feb 19, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.45160269

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo