Experimental and theoretical investigation of the mechanical characteristics of sillenite compound: Bi<sub>12</sub>GeO<sub>20</sub>

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The present study reports the mechanical and elastic characteristics of Bi12GeO20 (BGO) compound by experimental nanoindentation measurements and density functional theory (DFT) calculations. X-ray diffraction pattern of BGO was plotted and revealed diffraction peaks were associated with Miller indices of cubic crystalline structure with lattice constant of a = 10.304 angstrom. Two- and three-dimensional representations of Young's modulus, linear compressibility, shear modulus and Poisson's ratio were presented according to DFT calculations. The calculated elastic constants pointed out the mechanically stable and anisotropic behavior of the BGO. The hardness and Young's modulus ranges of the BGO calculated from DFT studies were found as 3.7-6.3 GPa and 61.7-98.9 GPa, respectively. Hardness and Young's modulus of BGO single crystal were also obtained by analyzing force-dependent nanoindentation experimental data. It was observed that hardness and Young's modulus decrease with increase of load in the low applied loads and then reaches saturation in the high applied loads. This behavior is known as indentation size effect. True hardness value was determined from proportional specimen resistance model as 4.1 GPa. The force independent region presented the Young's modulus as 114 GPa. (C) 2021 Elsevier B.V. All rights reserved.

Description

Gencer, Aysenur/0000-0003-2574-3516; SURUCU, Gokhan/0000-0002-3910-8575; SURUCU, Gokhan/0000-0002-3910-8575; Isik, Mehmet/0000-0003-2119-8266

Keywords

Bi12GeO20, Sillenites, Density functional theory, Nanoindentation, Mechanical properties

Turkish CoHE Thesis Center URL

Citation

5

WoS Q

Q1

Scopus Q

Source

Volume

882

Issue

Start Page

End Page

Collections