Search Results

Now showing 1 - 10 of 19
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Electrical Characterization of Zninse2 Thin-Film Heterojunction
    (Springer, 2019) Gullu, H. H.; Parlak, M.
    ZnInSe2/Cu0.5Ag0.5InSe2 diode structures have been fabricated by thermal evaporation of stacked layers on indium tin oxide-coated glass substrates. Temperature-dependent dark current-voltage measurements were carried out to extract the diode parameters and to determine the dominant conduction mechanisms in the forward- and reverse-bias regions. The heterostructure showed three order of magnitude rectifying behavior with a barrier height of 0.72 eV and ideality factor of 2.16 at room temperature. In the high forward-bias region, the series and shunt resistances were calculated with the help of parasitic resistance relations, yielding room-temperature values of 9.54 x 10(2) Omega cm(2) and 1.23 x 10(3) Omega cm(2), respectively. According to the analysis of the current flow in the forward-bias region, abnormal thermionic emission due to the variation of the ideality factor with temperature and space-charge-limited current processes were determined to be the dominant conduction mechanisms in this heterostructure. In the reverse-bias region, the tunneling mechanism was found to be effective in the leakage current flow with trap density of 10(6) cm(-3). Spectral photocurrent measurements were carried out to investigate the spectral working range of the device structure. The main photocurrent peaks observed in the spectrum corresponded to the band-edge values of the active thin-film layers.
  • Article
    Citation - WoS: 42
    Citation - Scopus: 41
    Analysis of Forward and Reverse Biased Current-Voltage Characteristics of Al/Al2< Schottky Diode With Atomic Layer Deposited Al2o3< Thin Film Interlayer
    (Springer, 2019) Gullu, H. H.; Yildiz, D. E.
    The dark current-voltage (I-V) characteristics of Al/Al2O3/n-Si Schottky diode are investigated in a wide temperature range of 260-360 K. The diode shows four orders of magnitude rectification. In forward and reverse bias regions, the temperature-dependent I-Vcharacteristics are detailed in terms of diode parameters and dominant conduction mechanisms. Due to the existence of Al2O3 film layer and series resistance in the diode structure, current flow under the forward bias is observed in a deviation from pure exponential characteristics. The diode parameters are estimated from thermionic emission model with non-unity ideality factor, and this non-ideal behavior is resulted in the ideality factors greater than two. In addition to these values, zero-bias barrier height is found to be strongly temperature dependent, and this variation indicates a presence of inhomogeneties in the barrier according to Gaussian distribution (GD) approximation. This fact is investigated plotting characteristic plot of this model and by extracting mean barrier height with its standard deviation. In order to complete the work on the forward I-V region, the carrier transport characteristics of the diode are explained on the basis of thermionic emission mechanism with a GD of the harrier heights. In accordance with this approximation, the conventional Richardson plot exhibits non-linearity behavior and modified current relation based on GD model is used to calculate mean barrier height and Richardson constant. In addition, the values of parasitic resistances are determined using Ohm's law as a function of temperature for all bias voltage spectra. In the reverse bias region, Poole-Frenkel effect is found to be dominant on the conduction associated with the barrier lowering, and barrier height in the emission process from the trapped states, and high-frequency dielectric constant of Al2O3 film layer is calculated.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Analysis of Temperature-Dependent Transmittance Spectra of Zn0.5in0.5< (zis) Thin Films
    (Springer, 2019) Isik, M.; Gullu, H. H.; Delice, S.; Gasanly, N. M.; Parlak, M.
    Temperature-dependent transmission experiments of ZnInSe thin films deposited by thermal evaporation method were performed in the spectral range of 550-950nm and in temperature range of 10-300K. Transmission spectra shifted towards higher wavelengths (lower energies) with increasing temperature. Transmission data were analyzed using Tauc relation and derivative spectroscopy. Analysis with Tauc relation was resulted in three different energy levels for the room temperature band gap values of material as 1.594, 1.735 and 1.830eV. The spectrum of first wavelength derivative of transmittance exhibited two maxima positions at 1.632 and 1.814eV and one minima around 1.741eV. The determined energies from both methods were in good agreement with each other. The presence of three band gap energy levels were associated to valence band splitting due to crystal-field and spin-orbit splitting. Temperature dependence of the band gap energies were also analyzed using Varshni relation and gap energy value at absolute zero and the rate of change of gap energy with temperature were determined.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 12
    A Study on Electrical Properties of Au/4h-sic Schottky Diode Under Illumination
    (Springer, 2021) Yildiz, D. E.; Karadeniz, S.; Gullu, H. H.
    Y In this work, a metal-semiconductor diode in the form of Au/4H-SiC is fabricated, and the electrical properties of this device are systematically examined under dark and different illumination intensities. To perform this, the currentvoltage (I-V) characteristics of the Schottky-type diode are analyzed at room temperature. The performance parameters such as saturation current (I-0), barrier height (Phi(B)), ideality factor (n) and series resistance (R-s) are found to be illumination dependent. The reverse biased I - V characteristics under incident light indicate high photo-sensitivity as compared to the response at forward bias. Thus, this result is investigated in detail according to both Schottky and Poole-Frenkel effects. It is found that the Poole-Frenkel mechanism is dominant in the reverse biased region. The Au/4H-SiC Schottky junction has a strong photo-current response to the different illumination intensities and transient photocurrent characteristics of the fabricated device are studied at the illumination intensities of 50 and 100 mW/cm(2). All experimental results indicate that the Au/4H-SiC Schottky diode, with a valuable response to the illumination together with change in illumination intensity, can be used for optoelectronic applications.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 13
    Analysis of Temperature-Dependent Forward and Leakage Conduction Mechanisms in Organic Thin Film Heterojunction Diode With Fluorine-Based Pcbm Blend
    (Springer, 2020) Yildiz, D. E.; Gullu, H. H.; Toppare, L.; Cirpan, A.
    The forward and reversed biased current-voltage behaviors of the organic diode were detailed in a wide range of temperatures. In this diode, a donor-acceptor-conjugated copolymer system was constructed with poly((9,9-dioctylfluorene)-2,7-diyl-(2-dodecyl-benzo[1,2,3]triazole)) as a partner of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Two-order of magnitude rectification ratio was achieved, and the temperature-dependent values of saturation current, zero-bias barrier height, and ideality factor were extracted according to the thermionic emission model. The temperature responses of these diode parameters showed an existence of inhomogeneity in the barrier height formation. As a result, the observed non-ideal behavior was explained by Gaussian distribution of barrier height where low-barrier regions are effective in the forward biased conduction mechanism at low temperatures. Together with this analysis, series resistances were evaluated using Cheung's functions and also density of interface states were investigated. On the other hand, reverse biased current flow was found under the dominant effect of Poole-Frenkel effects associated with these interfacial traps. The reverse current conduction mechanism was detailed by calculating characteristic field-lowering coefficients and barrier height values in the emission process from the trapped state in the range of temperatures of interest.
  • Article
    Citation - WoS: 32
    Citation - Scopus: 32
    Capacitance, Conductance, and Dielectric Characteristics of Al/Tio2< Diode
    (Springer, 2021) Gullu, H. H.; Yildiz, D. E.
    In this study, electrical properties of the Al/TiO2/p-Si diode structure with an atomic layer deposited TiO2 interface layer are investigated by current-voltage (I-V), capacitance-voltage (C - V), and conductance-voltage (G - V) measurements. It shows a rectifying behavior with about four order of rectification factor, and barrier height and ideality factor are calculated from the rectification curve. Dielectric parameters are determined from frequency-dependent C - V and G - V relations. The experimental results show that both of these curves are in a strong response to the frequency and bias voltage. They are found in decreasing behavior with increasing frequency, and both of them increase with increase in bias voltage although there are different increasing trends. At reversed bias voltage region, barrier potential, Fermi level energy, and interface charge carrier contribution are evaluated by using 1/C-2 - V plot. Series resistance values are also calculated under the variation of frequency and voltage. Thus, the capacitive characteristics of the diode are corrected by eliminating series resistance contribution together with the possible effect on interface charge carriers. Detailed information is obtained by determining electronic parameters affected by interface states over a wide frequency range (1 kHz to 1 MHz). At this point, strong response to the frequency is observed for the dielectric constant. Under the effect of interfacial polarization at low-frequency region, interface charge contribution to the capacitive response of the diode is obtained. Further analysis is performed on electrical modulus and impedance values derived from experimental dielectric data. Existence of interfacial layer capacitance is detailed by extracting distribution of interface charges from capacitance and conductance profiles of the diode under the effect of frequency.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Investigation of electrical characteristics of Ag/ZnO/Si sandwich structure
    (Springer, 2019) Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoglu, M.; Yildiz, D. E.; Parlak, M.
    In this study, temperature-dependent current-voltage (I-V), frequency-dependent capacitance-voltage (C-V) and conductance-voltage (G/omega-V) measurements are carried out for the electrical characterization of a zinc oxide (ZnO) thin film-based diode. The sandwich structure in the form of Ag/ZnO/Si/Al is investigated at temperatures between 220 and 360 K and in the frequency region of 1 kHz-1 MHz. ZnO thin film layer is deposited on a p-Si wafer substrate as a transparent conductive oxide layer by taking into consideration possible electronic applications with intrinsic attractive material properties. At each temperature step, the I-V curves showed about two orders of magnitude rectifying behavior and, according to the Schottky diode relation, the saturation current, zero-bias barrier height and ideality factor were extracted as a function of the temperature. In the case of non-ideal diode characteristics due to the inhomogeneties in the diode as observed from the characteristics of the calculated parameters, effective barrier height values are evaluated. In addition, based on the existence of the interface layer, density of interface states in the band gap region and parasitic resistances were determined by the capacitance measurements.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 14
    Analysis of Double Gaussian Distribution on Barrier Inhomogeneity in a Au/n-4H SiC Schottky Diode
    (Springer, 2021) Gullu, H. H.; Sirin, D. Seme; Yildiz, D. E.
    A n-4H SiC based diode is fabricated by an Au front metal contact to provide rectification at the metal-semiconductor (MS) junction, and a back ohmic contact is also obtained using Au metal with post-thermal heating. MS diode characteristics are investigated by current-voltage (I - V) measurements with a wide range of temperature from 80 K to 300 K. At each temperature, rectifying behavior is achieved and it is improved with an increase in temperature. Barrier height and ideality factor are calculated according to the thermionic emission (TE) model from linearity in the forward bias region of the ln(I) versus V plot. The experimental zero-bias barrier height (Phi(b0)) values are in a good agreement with literature, and at around room temperature the ideality factor (n) reaches unity. At saturation regions in I - V curves, parasitic resistance values are derived by Ohm's law and the series resistance values are also reevaluated by Cheung's relation. Detailed I - V analysis is performed by modifying the TE model with an approximation of low barrier patches embedded in the main barrier height. Two linear relations in the characteristic plots of Phi(b0) and n indicate that double Gaussian distribution is a suitable current conduction model via localized barrier patches at low temperatures. Additionally, reverse bias current flow is analyzed under the dominant effect of Poole-Frenkel emission associated with the interfacial traps. According to the characteristic electric field-dependent current density plot, emission barrier height and relative dielectric constant for n-4H SiC are calculated.
  • Article
    Citation - WoS: 32
    Citation - Scopus: 33
    Dark and Illuminated Electrical Characteristics of Si-Based Photodiode Interlayered With Cuco5s8< Nanocrystals
    (Springer, 2020) Yildiz, D. E.; Gullu, H. H.; Sarilmaz, A.; Ozel, F.; Kocyigit, A.; Yildirim, M.
    Derived from the traditional dichalcogenide CuS structure, ternary transition metal chalcogenide nanoparticles in the form of CuCo5S8 are investigated under the aim of photodiode application. In addition to the detailed analysis on material characteristics of CuCo5S8 thin-film layer, the work is focused on the electrical characteristics of Au/CuCo5S8/Si diode to investigate its current-voltage, capacitance-voltage, and conductance-voltage characteristics under dark and illuminated conditions. CuCo5S8 nanocrystals with an average size of 5 nm are obtained using hot-injection method, and they are used to form thin-film interfacial layer between metal (Au) and semiconductor (Si). Under dark conditions, the diodes show about four orders in magnitude rectification rate and diode illumination results in efficient rectification with increase in intensity. The analysis of current-voltage curve results in non-ideal diode characteristics according to the thermionic emission model due to the existence of series resistances and interface states with interface layer. The measured current-voltage values are used to extract the main diode parameters under dark and illumination conditions. Under illumination, photogenerated carriers contribute to the current flow and linear photoconductivity behavior in photocurrent measurements with illumination shows the possible use of CuCo5S8 layer in Si-based photodiodes. This characteristic is also observed from the typical on/off illumination switching behavior for the photodiodes in transient photocurrent, photocapacitance, and photoconductance measurements with a quick response to the illumination. The deviations from ideality are also discussed by means of distribution of interface states and series resistance depending on the applied frequency and bias voltage.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 19
    Electrical Characteristics of Organic Heterojunction With an Alternating Benzotriazole and Fluorene Containing Copolymer
    (Springer, 2020) Gullu, H. H.; Yildiz, D. E.; Toppare, L.; Cirpan, A.
    The current-voltage (I - V) and capacitance-voltage (C - V) characteristics of the organic heterojunction diode were investigated in a wide temperature range from 80 to 320 K and frequency range from 10 kHz to 1 MHz, respectively. Alternative to the copolymer partner poly(3-hexylthiophene) (P3HT) to [6,6]phenyl-C61-butyric acid methyl ester (PCBM), poly((9,9-dioctylfluorene)-2,7diyl-(4,7-bis(thien-2-yl)-2-dodecyl-benzo[1,2,3]triazole)) (named as copolymer in this work) was adapted to the bulk-heterojunction layer in the organic diode. Together with the use of Lif/Al bilayer electrode, the diode was fabricated as in the form of Al/LiF/copolymer:PCBM/PEDOT:PSS/ITO/glass. Under the applied bias voltage, this organic-based diode shows two- orders of magnitude rectifying behavior. According to thermionic emission (TE) model, the diode parameters such as saturation current, barrier height and ideality factor were determined and parasitic resistances were also extracted from the conventional ohmic relation. As to the temperature dependency of the diode parameters and their response to the temperature variation, barrier inhomogeneity, surface state and series resistance effects were found in dominant behavior on the current flow. The conduction mechanism was modeled by assuming low-barrier patches around the main barrier that supports TE at low temperatures and their distribution was expressed by a Gaussian function. In addition, series resistance values were detailed depending on temperature using Cheung's model. C - V analysis was performed to evaluate the distribution of surface states at the interface as a function of frequency. Based on the C - V plots, the effects of charges at these traps were observed especially at low frequencies. Additionally, from these results, Fermi level, surface potential and donor concentration values were evaluated in a wide frequency range.