Capacitance, conductance, and dielectric characteristics of Al/TiO<sub>2</sub>/Si diode

No Thumbnail Available

Date

2021

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this study, electrical properties of the Al/TiO2/p-Si diode structure with an atomic layer deposited TiO2 interface layer are investigated by current-voltage (I-V), capacitance-voltage (C - V), and conductance-voltage (G - V) measurements. It shows a rectifying behavior with about four order of rectification factor, and barrier height and ideality factor are calculated from the rectification curve. Dielectric parameters are determined from frequency-dependent C - V and G - V relations. The experimental results show that both of these curves are in a strong response to the frequency and bias voltage. They are found in decreasing behavior with increasing frequency, and both of them increase with increase in bias voltage although there are different increasing trends. At reversed bias voltage region, barrier potential, Fermi level energy, and interface charge carrier contribution are evaluated by using 1/C-2 - V plot. Series resistance values are also calculated under the variation of frequency and voltage. Thus, the capacitive characteristics of the diode are corrected by eliminating series resistance contribution together with the possible effect on interface charge carriers. Detailed information is obtained by determining electronic parameters affected by interface states over a wide frequency range (1 kHz to 1 MHz). At this point, strong response to the frequency is observed for the dielectric constant. Under the effect of interfacial polarization at low-frequency region, interface charge contribution to the capacitive response of the diode is obtained. Further analysis is performed on electrical modulus and impedance values derived from experimental dielectric data. Existence of interfacial layer capacitance is detailed by extracting distribution of interface charges from capacitance and conductance profiles of the diode under the effect of frequency.

Description

Yıldız, Dilber Esra/0000-0003-2212-199X

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

26

WoS Q

Q2

Scopus Q

Source

Volume

32

Issue

10

Start Page

13549

End Page

13567

Collections