Analysis of temperature-dependent transmittance spectra of Zn<sub>0.5</sub>In<sub>0.5</sub>Se (ZIS) thin films

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Temperature-dependent transmission experiments of ZnInSe thin films deposited by thermal evaporation method were performed in the spectral range of 550-950nm and in temperature range of 10-300K. Transmission spectra shifted towards higher wavelengths (lower energies) with increasing temperature. Transmission data were analyzed using Tauc relation and derivative spectroscopy. Analysis with Tauc relation was resulted in three different energy levels for the room temperature band gap values of material as 1.594, 1.735 and 1.830eV. The spectrum of first wavelength derivative of transmittance exhibited two maxima positions at 1.632 and 1.814eV and one minima around 1.741eV. The determined energies from both methods were in good agreement with each other. The presence of three band gap energy levels were associated to valence band splitting due to crystal-field and spin-orbit splitting. Temperature dependence of the band gap energies were also analyzed using Varshni relation and gap energy value at absolute zero and the rate of change of gap energy with temperature were determined.

Description

Gasanly, Nizami/0000-0002-3199-6686; Delice, Serdar/0000-0001-5409-6528; parlak, mehmet/0000-0001-9542-5121; Gasanly, Nizami/0000-0002-3199-6686;

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Q2

Scopus Q

Source

Volume

30

Issue

10

Start Page

9356

End Page

9362

Collections