Dark and Illuminated Electrical Characteristics of Si-Based Photodiode Interlayered With Cuco<sub>5</Sub>s<sub>8< Nanocrystals

Loading...
Publication Logo

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Derived from the traditional dichalcogenide CuS structure, ternary transition metal chalcogenide nanoparticles in the form of CuCo5S8 are investigated under the aim of photodiode application. In addition to the detailed analysis on material characteristics of CuCo5S8 thin-film layer, the work is focused on the electrical characteristics of Au/CuCo5S8/Si diode to investigate its current-voltage, capacitance-voltage, and conductance-voltage characteristics under dark and illuminated conditions. CuCo5S8 nanocrystals with an average size of 5 nm are obtained using hot-injection method, and they are used to form thin-film interfacial layer between metal (Au) and semiconductor (Si). Under dark conditions, the diodes show about four orders in magnitude rectification rate and diode illumination results in efficient rectification with increase in intensity. The analysis of current-voltage curve results in non-ideal diode characteristics according to the thermionic emission model due to the existence of series resistances and interface states with interface layer. The measured current-voltage values are used to extract the main diode parameters under dark and illumination conditions. Under illumination, photogenerated carriers contribute to the current flow and linear photoconductivity behavior in photocurrent measurements with illumination shows the possible use of CuCo5S8 layer in Si-based photodiodes. This characteristic is also observed from the typical on/off illumination switching behavior for the photodiodes in transient photocurrent, photocapacitance, and photoconductance measurements with a quick response to the illumination. The deviations from ideality are also discussed by means of distribution of interface states and series resistance depending on the applied frequency and bias voltage.

Description

Özel, Faruk/0000-0002-3689-0469; Kocyigit, Adem/0000-0002-8502-2860; Yıldız, Dilber Esra/0000-0003-2212-199X; YILDIRIM, Murat/0000-0002-4541-3752

Keywords

[No Keyword Available], [No Keywords]

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
20

Source

Journal of Materials Science: Materials in Electronics

Volume

31

Issue

2

Start Page

935

End Page

948

Collections

PlumX Metrics
Citations

CrossRef : 2

Scopus : 33

Captures

Mendeley Readers : 14

SCOPUS™ Citations

33

checked on Feb 21, 2026

Web of Science™ Citations

32

checked on Feb 21, 2026

Page Views

3

checked on Feb 21, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.16319508

Sustainable Development Goals

SDG data is not available