Analysis of Double Gaussian Distribution on Barrier Inhomogeneity in a Au/n-4H SiC Schottky Diode

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

A n-4H SiC based diode is fabricated by an Au front metal contact to provide rectification at the metal-semiconductor (MS) junction, and a back ohmic contact is also obtained using Au metal with post-thermal heating. MS diode characteristics are investigated by current-voltage (I - V) measurements with a wide range of temperature from 80 K to 300 K. At each temperature, rectifying behavior is achieved and it is improved with an increase in temperature. Barrier height and ideality factor are calculated according to the thermionic emission (TE) model from linearity in the forward bias region of the ln(I) versus V plot. The experimental zero-bias barrier height (Phi(b0)) values are in a good agreement with literature, and at around room temperature the ideality factor (n) reaches unity. At saturation regions in I - V curves, parasitic resistance values are derived by Ohm's law and the series resistance values are also reevaluated by Cheung's relation. Detailed I - V analysis is performed by modifying the TE model with an approximation of low barrier patches embedded in the main barrier height. Two linear relations in the characteristic plots of Phi(b0) and n indicate that double Gaussian distribution is a suitable current conduction model via localized barrier patches at low temperatures. Additionally, reverse bias current flow is analyzed under the dominant effect of Poole-Frenkel emission associated with the interfacial traps. According to the characteristic electric field-dependent current density plot, emission barrier height and relative dielectric constant for n-4H SiC are calculated.

Description

Yıldız, Dilber Esra/0000-0003-2212-199X;

Keywords

Schottky diode, current transport, double Gaussian distribution, barrier inhomogeneity

Turkish CoHE Thesis Center URL

Fields of Science

Citation

6

WoS Q

Q3

Scopus Q

Source

Volume

50

Issue

12

Start Page

7044

End Page

7056

Collections