20 results
Search Results
Now showing 1 - 10 of 20
Conference Object Citation - Scopus: 8An Empirical Comparison of Customer Behavior Modeling Approaches for Shopping List Prediction(Institute of Electrical and Electronics Engineers Inc., 2018) Peker,S.; Kocyigit,A.; Erhan Eren,P.Shopping list prediction is a crucial task for companies as it can enable to provide a specific customer a personalized list of products and improve customer satisfaction and loyalty as well. To predict customer behaviors, many studies in the literature have employed customer behavior modeling approaches which are individual-level and segment-based. However, previous efforts to predict customers' shopping lists have rarely employed these state-of-the-art approaches. In this manner, this paper introduces the segment based approach into the shopping list prediction and then presents an empirical comparison of the individual-level and the segment-based approaches in this problem. For this purpose, well-known machine learning classifiers and customers' purchase history are employed, and the comparison is performed on a real-life dataset by conducting a series of experiments. The results suggest that there is no clear winner in this comparison and the performances of customer behavior modeling approaches depend on the machine learning algorithm employed. The study can help researchers and practitioners to understand different aspects of using customer behavior modeling approaches in the shopping list prediction. © 2018 Croatian Society MIPRO.Article Citation - WoS: 38Citation - Scopus: 48Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion(Asme, 2020) Ozel, Tugrul; Altay, Ayca; Kaftanoglu, Bilgin; Leach, Richard; Senin, Nicola; Donmez, AlkanThe powder bed fusion-based additive manufacturing process uses a laser to melt and fuse powder metal material together and creates parts with intricate surface topography that are often influenced by laser path, layer-to-layer scanning strategies, and energy density. Surface topography investigations of as-built, nickel alloy (625) surfaces were performed by obtaining areal height maps using focus variation microscopy for samples produced at various energy density settings and two different scan strategies. Surface areal height maps and measured surface texture parameters revealed the highly irregular nature of surface topography created by laser powder bed fusion (LPBF). Effects of process parameters and energy density on the areal surface texture have been identified. Machine learning methods were applied to measured data to establish input and output relationships between process parameters and measured surface texture parameters with predictive capabilities. The advantages of utilizing such predictive models for process planning purposes are highlighted.Article Citation - WoS: 1Citation - Scopus: 1Machine Vs. Deep Learning Comparision for Developing an International Sign Language Translator(Taylor & Francis Ltd, 2022) Eryilmaz, Meltem; Balkaya, Ecem; Ucan, Eylul; Turan, Gizem; Oral, Seden GulayThis study aims to enable deaf and hard-of-hearing people to communicate with other individuals who know and do not know sign language. The mobile application was developed for video classification by using MediaPipe Library in the study. While doing this, considering the problems that deaf and hearing loss individuals face in Turkey and abroad modelling and training stages were carried out with the English language option. With the real-time translation feature added to the study individuals were provided with instant communication. In this way, communication problems experienced by hearing-impaired individuals will be greatly reduced. Machine learning and Deep learning concepts were investigated in the study. Model creation and training stages were carried out using VGG16, OpenCV, Pandas, Keras, and Os libraries. Due to the low success rate in the model created using VGG16, the MediaPipe library was used in the formation and training stages of the model. The reason for this is that, thanks to the solutions available in the MediaPipe library, it can normalise the coordinates in 3D by marking the regions to be detected in the human body. Being able to extract the coordinates independently of the background and body type in the videos in the dataset increases the success rate of the model in the formation and training stages. As a result of an experiment, the accuracy rate of the deep learning model is 85% and the application can be easily integrated with different languages. It is concluded that deep learning model is more accure than machine learning one and the communication problem faced by hearing-impaired individuals in many countries can be reduced easily.Article Citation - WoS: 6Deep Learning-Based Defect Prediction for Mobile Applications(Mdpi, 2022) Jorayeva, Manzura; Akbulut, Akhan; Catal, Cagatay; Mishra, AlokSmartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.Article Citation - WoS: 2Citation - Scopus: 2Classification of Different Recycled Rubber-Epoxy Composite Based on Their Hardness Using Laser-Induced Breakdown Spectroscopy (libs) With Comparison Machine Learning Algorithms(Mdpi, 2023) Yilmaz, Vadi Su; Yılmaz, Vadi Su; Eseller, Kemal Efe; Aslan, Ozgur; Aslan, Özgür; Bayraktar, Emin; Eseller, Kemal Efe; Yılmaz, Vadi Su; Aslan, Özgür; Eseller, Kemal Efe; Electrical-Electronics Engineering; Department of Electrical & Electronics Engineering; Mechanical Engineering; Electrical-Electronics Engineering; Mechanical Engineering; Department of Electrical & Electronics EngineeringThis paper aims toward the successful detection of harmful materials in a substance by integrating machine learning (ML) into laser-induced breakdown spectroscopy (LIBS). LIBS is used to distinguish five different synthetic polymers where eight different heavy material contents are also detected by LIBS. Each material intensity-wavelength graph is obtained and the dataset is constructed for classification by a machine learning (ML) algorithm. Seven popular machine learning algorithms are applied to the dataset which include eight different substances with their wavelength-intensity value. Machine learning algorithms are used to train the dataset, results are discussed and which classification algorithm is appropriate for this dataset is determined.Article Citation - WoS: 9Citation - Scopus: 13Improving Word Embedding Quality With Innovative Automated Approaches To Hyperparameters(Wiley, 2021) Yildiz, Beytullah; Yıldız, Beytullah; Tezgider, Murat; Yıldız, BeytullahDeep learning practices have a great impact in many areas. Big data and significant hardware developments are the main reasons behind deep learning success. Recent advances in deep learning have led to significant improvements in text analysis and classification. Progress in the quality of word representation is an important factor among these improvements. In this study, we aimed to develop word2vec word representation, also called embedding, by automatically optimizing hyperparameters. Minimum word count, vector size, window size, negative sample, and iteration number were used to improve word embedding. We introduce two approaches for setting hyperparameters that are faster than grid search and random search. Word embeddings were created using documents of approximately 300 million words. We measured the quality of word embedding using a deep learning classification model on documents of 10 different classes. It was observed that the optimization of the values of hyperparameters alone increased classification success by 9%. In addition, we demonstrate the benefits of our approaches by comparing the semantic and syntactic relations between word embedding using default and optimized hyperparameters.Conference Object Using Intelligent Support Systems for Endoscopic Surgery Training: Analysis of Hand Motion(Iated-int Assoc Technology Education & development, 2017) Topalli, D.; Cagiltay, N. E.The use of simulation techniques in medical education is an emerging topic in surgical training process, and there are limited number of studies found in this field in our country and the world. Recently, using the machine learning techniques in surgical training constitutes a new area of research. By using these techniques, cost-efficient educational tools will be developed in order to improve education efficiency and patient safety. In this scope, it is aimed to develop an intelligent support system by examining the hand movements of the experienced surgeons during a surgical education process and guide less-experienced surgeons. In order to develop this system, previously developed surgical simulation system infrastructure in ECE Project supported by Tubitak-1001 program will be used. The hand movements' data of experts obtained by special tactile devices (haptics) are analyzed with an experimental study. The results of this study aimed to improve the surgical simulation training process with the machine learning algorithm developed and therefore, provide a significant contribution to the surgical training process.Article Radar Emitter Localization Based on Multipath Exploitation Using Machine Learning(Ieee-inst Electrical Electronics Engineers inc, 2024) Catak, Ferhat Ozgur; Al Imran, Md Abdullah; Dalveren, Yaser; Yildiz, Beytullah; Kara, AliIn this study, a Machine Learning (ML)-based approach is proposed to enhance the computational efficiency of a particular method that was previously proposed by the authors for passive localization of radar emitters based on multipath exploitation with a single receiver in Electronic Support Measures (ESM) systems. The idea is to utilize a ML model on a dataset consisting of useful features obtained from the priori-known operational environment. To verify the applicability and computational efficiency of the proposed approach, simulations are performed on the pseudo-realistic scenes to create the datasets. Well-known regression ML models are trained and tested on the created datasets. The performance of the proposed approach is then evaluated in terms of localization accuracy and computational speed. Based on the results, it is verified that the proposed approach is computationally efficient and implementable in radar detection applications on the condition that the operational environment is known prior to implementation.Article Citation - WoS: 5Citation - Scopus: 6Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids(Mdpi, 2023) Awan, Maaz Ali; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliSmart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.Article Citation - WoS: 12Citation - Scopus: 12A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces(Mdpi, 2023) Erisen, SerdarEnergy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.

