Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Smart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.
Description
Catak, Ferhat Ozgur/0000-0002-2434-9966; Kara, Ali/0000-0002-9739-7619; Dalveren, Yaser/0000-0002-9459-0042
Keywords
radio frequency fingerprinting, machine learning, deep learning, software-defined radio, Internet of Things, cybersecurity, smart city, smart grid
Turkish CoHE Thesis Center URL
Fields of Science
Citation
0
WoS Q
Q2
Scopus Q
Source
Volume
12
Issue
24