Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion
No Thumbnail Available
Date
2020
Journal Title
Journal ISSN
Volume Title
Publisher
Asme
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
The powder bed fusion-based additive manufacturing process uses a laser to melt and fuse powder metal material together and creates parts with intricate surface topography that are often influenced by laser path, layer-to-layer scanning strategies, and energy density. Surface topography investigations of as-built, nickel alloy (625) surfaces were performed by obtaining areal height maps using focus variation microscopy for samples produced at various energy density settings and two different scan strategies. Surface areal height maps and measured surface texture parameters revealed the highly irregular nature of surface topography created by laser powder bed fusion (LPBF). Effects of process parameters and energy density on the areal surface texture have been identified. Machine learning methods were applied to measured data to establish input and output relationships between process parameters and measured surface texture parameters with predictive capabilities. The advantages of utilizing such predictive models for process planning purposes are highlighted.
Description
Senin, Nicola/0000-0002-9556-0363; Ozel, Tugrul/0000-0001-8198-490X
Keywords
additive manufacturing, surface analysis, machine learning, laser powder bed fusion, Metrology, Sensing, monitoring and diagnostics, laser powder bed fusion, machine learning, Sensing, monitoring and diagnostics, Metrology, additive manufacturing, surface analysis
Turkish CoHE Thesis Center URL
Fields of Science
0209 industrial biotechnology, 02 engineering and technology
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
28
Source
Journal of Manufacturing Science and Engineering
Volume
142
Issue
1
Start Page
End Page
PlumX Metrics
Citations
Scopus : 47
Captures
Mendeley Readers : 137
SCOPUS™ Citations
47
checked on Feb 03, 2026
Web of Science™ Citations
38
checked on Feb 03, 2026
Page Views
5
checked on Feb 03, 2026
Google Scholar™

OpenAlex FWCI
3.10495077
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

7
AFFORDABLE AND CLEAN ENERGY

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

13
CLIMATE ACTION

15
LIFE ON LAND


