Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion

dc.contributor.author Ozel, Tugrul
dc.contributor.author Altay, Ayca
dc.contributor.author Kaftanoglu, Bilgin
dc.contributor.author Leach, Richard
dc.contributor.author Senin, Nicola
dc.contributor.author Donmez, Alkan
dc.contributor.other Manufacturing Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:41:43Z
dc.date.available 2024-07-05T15:41:43Z
dc.date.issued 2020
dc.description Senin, Nicola/0000-0002-9556-0363; Ozel, Tugrul/0000-0001-8198-490X en_US
dc.description.abstract The powder bed fusion-based additive manufacturing process uses a laser to melt and fuse powder metal material together and creates parts with intricate surface topography that are often influenced by laser path, layer-to-layer scanning strategies, and energy density. Surface topography investigations of as-built, nickel alloy (625) surfaces were performed by obtaining areal height maps using focus variation microscopy for samples produced at various energy density settings and two different scan strategies. Surface areal height maps and measured surface texture parameters revealed the highly irregular nature of surface topography created by laser powder bed fusion (LPBF). Effects of process parameters and energy density on the areal surface texture have been identified. Machine learning methods were applied to measured data to establish input and output relationships between process parameters and measured surface texture parameters with predictive capabilities. The advantages of utilizing such predictive models for process planning purposes are highlighted. en_US
dc.identifier.doi 10.1115/1.4045415
dc.identifier.issn 1087-1357
dc.identifier.issn 1528-8935
dc.identifier.scopus 2-s2.0-85085739529
dc.identifier.uri https://doi.org/10.1115/1.4045415
dc.identifier.uri https://hdl.handle.net/20.500.14411/3488
dc.language.iso en en_US
dc.publisher Asme en_US
dc.relation.ispartof Journal of Manufacturing Science and Engineering
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject additive manufacturing en_US
dc.subject surface analysis en_US
dc.subject machine learning en_US
dc.subject laser powder bed fusion en_US
dc.subject Metrology en_US
dc.subject Sensing en_US
dc.subject monitoring and diagnostics en_US
dc.title Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Senin, Nicola/0000-0002-9556-0363
gdc.author.id Ozel, Tugrul/0000-0001-8198-490X
gdc.author.institutional Kaftanoğlu, Bilgin
gdc.author.scopusid 6602845239
gdc.author.scopusid 25122060200
gdc.author.scopusid 7003779929
gdc.author.scopusid 55537405200
gdc.author.scopusid 55898797900
gdc.author.scopusid 6603446456
gdc.author.wosid Ozel, Tugrul/C-8979-2009
gdc.author.wosid Senin, Nicola/IWE-1434-2023
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ozel, Tugrul; Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, Piscataway, NJ 08854 USA; [Kaftanoglu, Bilgin] Atilim Univ, Met Forming Ctr Excellence, TR-06836 Ankara, Turkey; [Leach, Richard] Univ Nottingham, Fac Engn, Nottingham NG7 2RD, England; [Senin, Nicola] Univ Perugia, Dept Engn, I-06123 Perugia, Italy; [Donmez, Alkan] NIST, Engn Lab, Gaithersburg, MD 20899 USA en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 142 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2988091809
gdc.identifier.wos WOS:000525415600009
gdc.oaire.diamondjournal false
gdc.oaire.impulse 14.0
gdc.oaire.influence 3.763539E-9
gdc.oaire.isgreen false
gdc.oaire.keywords laser powder bed fusion
gdc.oaire.keywords machine learning
gdc.oaire.keywords Sensing
gdc.oaire.keywords monitoring and diagnostics
gdc.oaire.keywords Metrology
gdc.oaire.keywords additive manufacturing
gdc.oaire.keywords surface analysis
gdc.oaire.popularity 2.6814776E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0209 industrial biotechnology
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 2.578
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 28
gdc.plumx.mendeley 137
gdc.plumx.scopuscites 46
gdc.scopus.citedcount 46
gdc.wos.citedcount 36
relation.isAuthorOfPublication 6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isAuthorOfPublication.latestForDiscovery 6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isOrgUnitOfPublication 9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections