Focus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusion

dc.authoridSenin, Nicola/0000-0002-9556-0363
dc.authoridOzel, Tugrul/0000-0001-8198-490X
dc.authorscopusid6602845239
dc.authorscopusid25122060200
dc.authorscopusid7003779929
dc.authorscopusid55537405200
dc.authorscopusid55898797900
dc.authorscopusid6603446456
dc.authorwosidOzel, Tugrul/C-8979-2009
dc.authorwosidSenin, Nicola/IWE-1434-2023
dc.contributor.authorOzel, Tugrul
dc.contributor.authorAltay, Ayca
dc.contributor.authorKaftanoglu, Bilgin
dc.contributor.authorLeach, Richard
dc.contributor.authorSenin, Nicola
dc.contributor.authorDonmez, Alkan
dc.contributor.otherManufacturing Engineering
dc.date.accessioned2024-07-05T15:41:43Z
dc.date.available2024-07-05T15:41:43Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-temp[Ozel, Tugrul; Altay, Ayca] Rutgers State Univ, Dept Ind & Syst Engn, Piscataway, NJ 08854 USA; [Kaftanoglu, Bilgin] Atilim Univ, Met Forming Ctr Excellence, TR-06836 Ankara, Turkey; [Leach, Richard] Univ Nottingham, Fac Engn, Nottingham NG7 2RD, England; [Senin, Nicola] Univ Perugia, Dept Engn, I-06123 Perugia, Italy; [Donmez, Alkan] NIST, Engn Lab, Gaithersburg, MD 20899 USAen_US
dc.descriptionSenin, Nicola/0000-0002-9556-0363; Ozel, Tugrul/0000-0001-8198-490Xen_US
dc.description.abstractThe powder bed fusion-based additive manufacturing process uses a laser to melt and fuse powder metal material together and creates parts with intricate surface topography that are often influenced by laser path, layer-to-layer scanning strategies, and energy density. Surface topography investigations of as-built, nickel alloy (625) surfaces were performed by obtaining areal height maps using focus variation microscopy for samples produced at various energy density settings and two different scan strategies. Surface areal height maps and measured surface texture parameters revealed the highly irregular nature of surface topography created by laser powder bed fusion (LPBF). Effects of process parameters and energy density on the areal surface texture have been identified. Machine learning methods were applied to measured data to establish input and output relationships between process parameters and measured surface texture parameters with predictive capabilities. The advantages of utilizing such predictive models for process planning purposes are highlighted.en_US
dc.identifier.citation23
dc.identifier.doi10.1115/1.4045415
dc.identifier.issn1087-1357
dc.identifier.issn1528-8935
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85085739529
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1115/1.4045415
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3488
dc.identifier.volume142en_US
dc.identifier.wosWOS:000525415600009
dc.identifier.wosqualityQ2
dc.institutionauthorKaftanoğlu, Bilgin
dc.language.isoenen_US
dc.publisherAsmeen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadditive manufacturingen_US
dc.subjectsurface analysisen_US
dc.subjectmachine learningen_US
dc.subjectlaser powder bed fusionen_US
dc.subjectMetrologyen_US
dc.subjectSensingen_US
dc.subjectmonitoring and diagnosticsen_US
dc.titleFocus Variation Measurement and Prediction of Surface Texture Parameters Using Machine Learning in Laser Powder Bed Fusionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isAuthorOfPublication.latestForDiscovery6a16f0d1-a867-4770-b8fd-9628467d1eb8
relation.isOrgUnitOfPublication9804a563-7f37-4a61-92b1-e24b3f0d8418
relation.isOrgUnitOfPublication.latestForDiscovery9804a563-7f37-4a61-92b1-e24b3f0d8418

Files

Collections