Improving Word Embedding Quality With Innovative Automated Approaches To Hyperparameters
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Deep learning practices have a great impact in many areas. Big data and significant hardware developments are the main reasons behind deep learning success. Recent advances in deep learning have led to significant improvements in text analysis and classification. Progress in the quality of word representation is an important factor among these improvements. In this study, we aimed to develop word2vec word representation, also called embedding, by automatically optimizing hyperparameters. Minimum word count, vector size, window size, negative sample, and iteration number were used to improve word embedding. We introduce two approaches for setting hyperparameters that are faster than grid search and random search. Word embeddings were created using documents of approximately 300 million words. We measured the quality of word embedding using a deep learning classification model on documents of 10 different classes. It was observed that the optimization of the values of hyperparameters alone increased classification success by 9%. In addition, we demonstrate the benefits of our approaches by comparing the semantic and syntactic relations between word embedding using default and optimized hyperparameters.
Description
YILDIZ, Beytullah/0000-0001-7664-5145
ORCID
Keywords
deep learning, machine learning, text analysis, text classification, word embedding, word2vec
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology, 01 natural sciences, 0105 earth and related environmental sciences
Citation
WoS Q
Q3
Scopus Q
Q2

OpenCitations Citation Count
16
Source
Concurrency and Computation: Practice and Experience
Volume
33
Issue
18
Start Page
End Page
PlumX Metrics
Citations
CrossRef : 7
Scopus : 13
Captures
Mendeley Readers : 17
Google Scholar™

OpenAlex FWCI
2.68096793
Sustainable Development Goals
2
ZERO HUNGER

3
GOOD HEALTH AND WELL-BEING

5
GENDER EQUALITY

6
CLEAN WATER AND SANITATION

11
SUSTAINABLE CITIES AND COMMUNITIES

14
LIFE BELOW WATER

15
LIFE ON LAND

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


