6 results
Search Results
Now showing 1 - 6 of 6
Article Citation - WoS: 7Citation - Scopus: 9Properties of Boron Doped Ti-Ba Superconductors(Pergamon-elsevier Science Ltd, 2003) Kayed, TSThe effects of boron doping on the formation and properties of the Tl-based superconductors have been studied. Up to 10 wt.% boron has been added to the oxides having the nominal composition, Tl1.8Ba2Ca2.2Cu3Ox, by the usual solid-state reaction method. Boron additions in the range 0.8-1.0% increase the fraction of the Tl-2223 phase and significantly improve the critical temperature of the samples. Higher amounts of boron additions eliminate the Tl-2223 phase, reduce the fraction of Tl-2212 phase and cause separate non-superconducting phases to be formed. The formation of non-superconducting phases does not allow us to obtain pure Tl-2212 phase. (C) 2002 Elsevier Science Ltd. All rights reserved.Article Citation - WoS: 42Citation - Scopus: 41Synthesis and Characterization of Mg2b2<(Pergamon-elsevier Science Ltd, 2005) Qasrawi, AF; Kayed, TS; Mergen, A; Gürü, MMagnesium borate of the form Mg2B2O5 has been prepared and its structural and thermal properties were studied using X-ray diffraction and differential thermal analysis. An investigation of the electrical and optical properties of Mg2B2O5 system has been carried out. The electrical resistivity of the sample was measured in the temperature range of 170-400 K. The data analysis revealed an extrinsic nature of the conductivity with two impurity levels located at 0.13 and 0.71 eV in the temperature ranges of 170-230 K and 240-400 K, respectively. The optical transmission and reflection was recorded at 300 K in the incident photon energy range of 3.0-6.0 eV. The absorption coefficient data analysis revealed an indirect optical energy band gap of 4.73 eV. In addition, two impurity levels located at 3.43, and 4.49 eV were observed in the absorption spectra. (c) 2005 Elsevier Ltd. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 10Fabrication and Characterization of Yb/Moo3< Devices(Elsevier Science Bv, 2019) Al Garni, S. E.; Qasrawi, A. F.In this study we have explored some of the properties of Yb/MoO3/(C, Yb) thin films as a multifunctional optoelectronic device. While the MoO3 films which are deposited onto glass substrate are found to be of amorphous nature, the Yb metal induced the growth of orthorhombic phase of MoO3. The films are high transparent and exhibit energy band gap value of 3.0 eV which make it sensitive to light signals in the near ultraviolet range of light. In addition, the frequency dependent capacitance-voltage characteristics of Yb/MoO3/(C,Yb) structure display pronounced accumulation, depletion and inversion regions that nominate it for use as tunable metal-oxide-semiconductor MOS device. The physical parameters including the built in voltage, barrier height, flat band and threshold voltages of the MOS capacitors are also determined. Furthermore, the current-voltage characteristics displayed high rectification ratio that could reach 1.26 x 10(4) at biasing voltage of 0.5 V nominating the Yb/MoO3/C device for use as electronic switches. On the other hand, the impedance spectroscopy analysis in the frequency domain of 0.01-1.80 GHz, have shown that the Yb/MoO3/Yb structures are more appropriate for microwave applications than Yb/MoO3/C device. The microwave cutoff frequency for the Yb sandwiched MoO3 exceeds 140 GHz. The return loss for the Yb/MoO3/Yb reaches 26 dB at 1.8 GHz. These values are attractive as they suit microwave low/high pass band fillers.Article Citation - WoS: 4Citation - Scopus: 4Crystal Data and Indirect Optical Transitions in Tl2ingase4< Crystals(Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.The room temperature crystal data and the optical properties of the Bridgman method grown Tl2InGaSe4 crystals are reported and discussed. The X-ray diffraction technique has revealed that Tl2InGaSe4 is a single phase crystal of monoclinic structure. The unit cell lattice parameters, which were recalculated from the X-ray data, are found to be a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees. The temperature dependence of the optical band gap of Tl2InGaSe4 single crystal in the temperature region of 290-500 K has also been investigated. The absorption coefficient was calculated from the transmittance and reflectance data in the incident photon energy range of 1.60-2.10 eV. The absorption edge is observed to shift toward lower energy values as temperature increases. The fundamental absorption edge corresponds to indirect allowed transition energy gap of 1.86 eV that exhibited a temperature coefficient gamma = -3.53 x 10(-4) eV/K. (C) 2007 Elsevier Ltd. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Effect of Lithium Nanosandwiching on the Structural, Optical and Dielectric Performance of Moo3(Elsevier, 2019) Al Garni, S. E.; Qasrawi, A. F.In this article, we discuss the effects of lithium nanosheets on the structural, optical, dielectric and optical conductivity parameters of the MoO3 films. The nanosandwiching of Li layers between two layers of MoO3 of thicknesses larger than 20 nm induced the crystallization process of the amorphous MoO3. Namely, MoO3 thin films that are nanosandwiched with Li sheets of thicknesses larger than 50 nm, exhibit structural phase transitions from hexagonal to monoclinic and reveals larger crystallite sizes. The possible formation of Li2O at the MoO3/Li/MoO3 interfaces is simulated and discussed. Optically, the Li nanosandwiching is observed to enhance the light absorbability by 11.0 times at 2.0 eV and successfully engineered the energy bands gap in the range of 3.05-0.45 eV. It also enhances the dielectric performance. In addition, relatively thick layers of lithium (200 nm) succeeds in converting the conductivity type from n-to p-type. The modeling of the dielectric spectra in accordance with the Drude- Lorentz approach have shown that the presence of Li in the structure of MoO(3 )significantly increases the drift mobility values of electrons from 5.86 to 11.40 cm(2)/V. The plasmon frequency range for this system varies in the frequency domain of 0.32-5.94 GHz. The features of MoO3/Li/MoO3 interfaces make them attractive for thin film transistor technology as optical receivers being promising for use in optical communications.Article Citation - WoS: 21Citation - Scopus: 21Design and Characterization of Moo3 Heterojunctions(Elsevier Science Bv, 2019) Al Garni, S. E.; Qasrawi, A. F.In this work, the morphological, compositional, structural, optical and dielectric properties of CdSe which are deposited onto glass and onto MoO3 thin film substrates are investigated. The use of MoO3 as substrate for the growth of CdSe is observed to increase the lattice parameters of the hexagonal unit cell of CdSe and decreases the values of grain size and strain. It also forms band tails of width of 0.20 eV in the band gap of CdSe. The optical analysis has shown that the MoO3/CdSe interfacing results in blue shift in the energy band gap of CdSe and also result in large conduction and valence band of sets of values of 2.12 and 0.94 eV, respectively. The dielectric spectral analysis with the help of Prude-Lorentz approaches for optical conduction, revealed an enhancement in the drift mobility of charge carriers from 15.69 to 39.30 cm(2)/V as a response to the incident electromagnetic field. The free carrier density of the MoO3/CdSe being of the order of 10(17) cm(-3) with the large valence and conduction band offsets and the sufficiently large drift mobility nominates the MoO3/CdSe heterojunctions as an effective component of optoelectronic technology including thin film transistors.

