Effect of Lithium Nanosandwiching on the Structural, Optical and Dielectric Performance of Moo<sub>3</Sub>

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

In this article, we discuss the effects of lithium nanosheets on the structural, optical, dielectric and optical conductivity parameters of the MoO3 films. The nanosandwiching of Li layers between two layers of MoO3 of thicknesses larger than 20 nm induced the crystallization process of the amorphous MoO3. Namely, MoO3 thin films that are nanosandwiched with Li sheets of thicknesses larger than 50 nm, exhibit structural phase transitions from hexagonal to monoclinic and reveals larger crystallite sizes. The possible formation of Li2O at the MoO3/Li/MoO3 interfaces is simulated and discussed. Optically, the Li nanosandwiching is observed to enhance the light absorbability by 11.0 times at 2.0 eV and successfully engineered the energy bands gap in the range of 3.05-0.45 eV. It also enhances the dielectric performance. In addition, relatively thick layers of lithium (200 nm) succeeds in converting the conductivity type from n-to p-type. The modeling of the dielectric spectra in accordance with the Drude- Lorentz approach have shown that the presence of Li in the structure of MoO(3 )significantly increases the drift mobility values of electrons from 5.86 to 11.40 cm(2)/V. The plasmon frequency range for this system varies in the frequency domain of 0.32-5.94 GHz. The features of MoO3/Li/MoO3 interfaces make them attractive for thin film transistor technology as optical receivers being promising for use in optical communications.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Li/MoO3, X-ray diffraction, Nanosandwiching, Optical conduction, Dielectric

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q1

Source

Volume

114

Issue

Start Page

End Page

Collections