10 results
Search Results
Now showing 1 - 10 of 10
Article Citation - WoS: 2Citation - Scopus: 2Analysis of Optical Constants and Temperature-Dependent Absorption Edge of Gas0.75se0.25< Layered Crystals(Pergamon-elsevier Science Ltd, 2017) Isik, Mehmet; Gasanly, NizamiGaS0.75Se0.25 single crystals were optically characterized through transmission and reflection measurements in the wavelength range of 450-1000 nm. Derivative spectrophotometry analyses on temperature dependent transmittance spectra showed that band gap energies of the crystal increase from 239 eV (T=300 K) to 2.53 eV (T=10 K). Band gap at zero temperature, average phonon energy, electron phonon coupling parameter and rates of change of band gap energy with temperature were found from the temperature dependences of band gap energies under the light of different models reported in literature. Furthermore, the dispersion of room temperature refractive index was discussed in terms of single effective oscillator model. The refractive index dispersion parameters, namely oscillator and dispersion energies, zero-frequency refractive index, were determined as a result of analyses. (C) 2017 Elsevier Ltd. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Structural, Electrical and Anisotropic Properties of Tl4se3< Chain Crystals(Pergamon-elsevier Science Ltd, 2009) Qasrawi, A. F.; Gasanly, N. M.The structure, the anisotropy effect on the current transport mechanism and the space charge limited current in Tl4Se3S chain crystals have been studied by means of X-ray diffraction, electrical conductivity measurements along and perpendicular to the crystal's c-axis and the current voltage characteristics. The temperature-dependent electrical conductivity analysis in the region of 150-400 K, revealed the domination of the thermionic emission of charge carriers over the chain boundaries above 210 and 270 K along and perpendicular to the c-axis, respectively. Below these temperatures, the variable range hopping is dominant. At a consistent temperature range, the thermionic emission analysis results in conductivity activation energies of 280 and 182 meV, along and perpendicular to the c-axis, respectively. Likewise, the hopping parameters are altered significantly by the conductivity anisotropy. The current-voltage characteristics revealed the existence of hole trapping state being located at 350 meV above the valence band of the crystal. (C) 2009 Elsevier Ltd. All rights reserved.Article Hopping Conduction in Ga4se3< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.The conduction mechanism in Ga4Se3S single crystals has been investigated by means of dark and illuminated conductivity measurements for the first time. The temperature-dependent electrical conductivity analysis in the region of 100-350 K, revealed the dominance of the thermionic emission and the thermally assisted variable range hopping (VRH) of charged carriers above and below 170 K, respectively. The density of states near the Fermi level and the average hopping distance for this crystal in the dark were found to be 7.20 x 10(15) cm(-3) eV(-1) and 7.56 x 10(-6) cm, respectively. When the sample was illuminated, the Mott's VRH parameters are altered, particularly, the average hopping distance and the density of states near the Fermi level increase when light intensity increases. This action is attributed to the electron generation by photon absorption, which in turn leads to the Fermi level shift and/or trap density reduction by electron-hole recombination. (C) 2008 Elsevier Ltd. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 1Dark Electrical Conductivity and Photoconductivity of Ga4se3< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.Ga(4)Se(3)S layered crystals were studied through the dark electrical conductivity, and illumination- and temperature-dependent photoconductivity in the temperature region of 100-350 K. The dark electrical conductivity reflected the existence of two energy states located at 3 10 and 60 meV being dominant above and below 170 K, respectively. The photoconductivity measurements revealed the existence of another two energy levels located at 209 and 91 meV above and below 230 K. The photoconductivity was observed to increase with increasing temperature. The illumination dependence of photoconductivity was found to exhibit linear and supralinear recombination above and below 280 K, respectively. The change in recombination mechanism was attributed to the exchange in the behavior of sensitizing and recombination centers. (C) 2008 Elsevier Ltd. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Anisotropic Electrical and Dispersive Optical Parameters in Ins Layered Crystals(Pergamon-elsevier Science Ltd, 2010) Qasrawi, A. F.; Gasanly, N. M.The anisotropy effect on the current transport mechanism and on the dispersive optical parameters of indium monosulfide crystals has been studied by means of electrical conductivity and polarized reflectance measurements along the a-axis and the b-axis, respectively. The temperature-dependent electrical conductivity analysis in the range 10-350 K for the a-axis and in the range 30-350 K for the b-axis revealed the domination of the thermionic emission of charge carriers and the domination of variable range hopping above and below 100 K, respectively. At high temperatures (T > 100 K) the conductivity anisotropy, s, decreased sharply with decreasing temperature following the law s proportional to exp(-E(s)/kT). The anisotropy activation energy, E(s), was found to be 330 and 17 meV above and below 220 K, respectively. Below 100 K, the conductivity anisotropy is invariant with temperature. in that region, the calculated hopping parameters are altered significantly by the conductivity anisotropy. The optical reflectivity analysis in the wavelength range 250-650 nm revealed a clear anisotropy effect on the dispersive optical parameters. In particular, the static refractive index, static dielectric constant, lattice dielectric constant, dispersion energy and oscillator energy exhibited values of 2.89, 8.39, 19.7, 30.02 eV and 4.06 eV, and values of 2.76, 7.64, 25.9, 22.26 eV and 3.35 eV for light polarized along the a-axis and the b-axis, respectively. (C) 2009 Elsevier Ltd. All rights reserved.Article Citation - WoS: 9Citation - Scopus: 9Thermally Stimulated Current Measurements in Undoped Ga3inse4< Single Crystals(Pergamon-elsevier Science Ltd, 2011) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThe trap levels in nominally undoped Ga3InSe4 crystals were investigated in the temperature range of 10-300 K using the thermally stimulated currents technique. The study of trap levels was accomplished by the measurements of current flowing along the c-axis of the crystal. During the experiments we utilized a constant heating rate of 0.8 K/s. Experimental evidence is found for one hole trapping center in the crystal with activation energy of 62 meV. The analysis of the experimental TSC curve gave reasonable results under the model that assumes slow retrapping. The capture cross-section of the trap was determined as 1.0 x 10(-25) cm(2) with concentration of 1.4 x 10(17) cm(-3). (C) 2011 Elsevier Ltd. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Determination of Trapping Parameters of Thermoluminescent Glow Peaks of Semiconducting Tl2ga2< Crystals(Pergamon-elsevier Science Ltd, 2015) Isik, M.; Yildirim, T.; Gasanly, N. M.Thermoluminescence (TL) properties of Tl2Ga2S3Se layered single crystals were researched in the temperature range of 290-770 K. U glow curve exhibited two peaks with maximum temperatures of similar to 373 and 478 K. Curve fitting, initial rise and peak shape methods were used to determine the activation energies of the trapping centers associated with these peaks. Applied methods were in good agreement with the energies of 780 and 950 meV. Capture cross sections and attempt-to-escape frequencies of the trapping centers were reported. An energy level diagram showing transitions in the band gap of the crystal was plotted under the light of the results of the present work and previously reported papers on photoluminescence, thermoluminescence and thermally stimulated current measurements carried out below room temperature. (C) 2015 Elsevier Ltd. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 7Trapping Centers and Their Distribution in Tl2ga2< Layered Single Crystals(Pergamon-elsevier Science Ltd, 2009) Isik, M.; Gasanly, N. M.Thermally stimulated current (TSC) measurements with current flowing perpendicular to the layers were carried out on Tl2Ga2Se3S layered single crystals in the temperature range of 10-260K. The experimental data were analyzed by using different methods, such as curve fitting, initial rise and isothermal decay methods. The analysis revealed that there were three trapping centers with activation energies of 12, 76 and 177 meV. It was concluded that retrapping in these centers was negligible, which was confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. The capture cross section and the concentration of the traps have been also determined. An exponential distribution of electron traps was revealed from the analysis of the TSC data obtained at different light illumination temperatures. This experimental technique provided values of 10 and 88 meV/decade for the traps distribution related to two different trapping centers. (C) 2009 Elsevier Ltd. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Optical Characterization of Cuin5s8< Crystals by Ellipsometry Measurements(Pergamon-elsevier Science Ltd, 2016) Isik, Mehmet; Gasanly, NizamiOptical properties of CuIn5S8 crystals grown by Bridgman method were investigated by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficients were obtained from the analysis of ellipsometry experiments performed in the 1.2-6.2 eV spectral region. Analysis of spectral dependence of the absorption coefficient revealed the existence of direct band gap transitions with energy 1.53 eV. Wemple-DiDomenico and Spitzer-Fan models were used to find the oscillator energy, dispersion energy, zero-frequency refractive index and high-frequency dielectric constant values. Structural properties of the CuIn5S8 crystals were investigated using X-ray diffraction and energy dispersive spectroscopy analysis. (C) 2015 Elsevier Ltd. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 11Optical Constants of Layered Structured Ga0.75in0.25< Crystals From the Ellipsometric Measurements(Pergamon-elsevier Science Ltd, 2012) Isik, M.; Cetin, S. S.; Gasanly, N. M.; Ozcelik, S.We have carried out the spectroscopic ellipsometry measurements on Ga0.75In0.25Se single crystals in the 1.2-6.0 eV spectral range at room temperature. The optical constants, real and imaginary parts of the dielectric function, refractive index and extinction coefficient, were found as a result of analysis of ellipsometric data. The critical point analysis of the second derivative spectra of the dielectric function revealed four interband transition structures with critical point energy values of 3.19, 3.53, 4.10 and 4.98 eV. The results of the analysis were compared with those of the ellipsometric studies performed on GaSe which is the main constituent of the Ga0.75In0.25Se crystal. The obtained critical point energies are in good agreement with the energies of the GaSe crystal reported in the literature. (C) 2012 Elsevier Ltd. All rights reserved.

