Anisotropic electrical and dispersive optical parameters in InS layered crystals

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The anisotropy effect on the current transport mechanism and on the dispersive optical parameters of indium monosulfide crystals has been studied by means of electrical conductivity and polarized reflectance measurements along the a-axis and the b-axis, respectively. The temperature-dependent electrical conductivity analysis in the range 10-350 K for the a-axis and in the range 30-350 K for the b-axis revealed the domination of the thermionic emission of charge carriers and the domination of variable range hopping above and below 100 K, respectively. At high temperatures (T > 100 K) the conductivity anisotropy, s, decreased sharply with decreasing temperature following the law s proportional to exp(-E(s)/kT). The anisotropy activation energy, E(s), was found to be 330 and 17 meV above and below 220 K, respectively. Below 100 K, the conductivity anisotropy is invariant with temperature. in that region, the calculated hopping parameters are altered significantly by the conductivity anisotropy. The optical reflectivity analysis in the wavelength range 250-650 nm revealed a clear anisotropy effect on the dispersive optical parameters. In particular, the static refractive index, static dielectric constant, lattice dielectric constant, dispersion energy and oscillator energy exhibited values of 2.89, 8.39, 19.7, 30.02 eV and 4.06 eV, and values of 2.76, 7.64, 25.9, 22.26 eV and 3.35 eV for light polarized along the a-axis and the b-axis, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Description

Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686

Keywords

Semiconductors, Crystal growth, Electronic transport, Optical properties

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Q3

Scopus Q

Source

Volume

150

Issue

7-8

Start Page

325

End Page

328

Collections