15 results
Search Results
Now showing 1 - 10 of 15
Master Thesis Yapay Sinir Ağları (ysa) Kullanarak Yüz İfadelerini Tanıma(2012) Günler, Mine Altınay; Tora, HakanYüz ifadeleri sözsüz iletişimin bir türüdür. Kişinin duygu durumunu barındırırlar. Yüz ifadelerini otomatik olarak analiz etme günümüzde popular bir araştırma alanıdır. Psikoloji, eğitim, cinayet masası, suça eğilim analizi gibi çeşitli alanlarda kişinin zihinsel sinyalleri hakkında ipucu elde etmek için kullanılır. Bu tez çalışması duygu tanıma analizi için yapay sinir ağları (YSA) tabanlı üç değişik yaklaşım önermektedir. İlk olarak, ağaç tabanlı sinir ağları yapısı önerilmiştir. İkinci olarak, duygu sınıflandırılması için gizli katman çıktıları kullanılmıştır. Son olarak, yüz özellikleri tabanlı bir sistem tasarlanmıştır. Önerilen her bir metot Matlab kullanılarak oluşturulmuştur ve her biri gülen, sinirli ve bağıran yüz ifadelerini başarılı bir şekilde tanıyabilmektedir.Master Thesis Hoparlör Bağımsız İzolasyonlu Rakam Tanıma(2020) Hamıd, Mohammed Saeed; Tora, HakanÇeşitli konuşma sinyali işleme uygulamalarında VAD, bir ses akışını konuşma etkinliği ve konuşmanın olmadığı zaman aralıklarını içeren zaman aralıklarına bölmek için önemli bir karakter sunar. Bu araştırmada, izole kelime tanıma ile ilgili yeni bir yaklaşım sunduk. İlk aşamada, ses etkinliği algılama (VAD) problem kırma penceresi, Bohman işlevi ve Bartlett-Hann işlevi için üç işlev uygulanmıştır. Hem Bohman fonksiyonu hem de Bartlett-Hann fonksiyonu VAD problemi için önceki çalışmalarda uygulanmamıştır. Öte yandan, perde, MFCC'ler ve enerji, özellik çıkarma teknikleri olarak uygulanır ve bu iki yöntemin yeni yaklaşımlar olduğu SOFTMAX ile birleştirilir. Pitch tabanlı SOFTMAX, SOFTMAX'a bağlanan ve yedi kelimeye göre sınıflandırılan ve% 85 doğrulukla özelliklerle çıkarılan olağanüstü sonuçlar sundu. Ayrıca enerji, özellik çıkarma ve SOFTMAX'a bağlanan bu fonksiyonun çıktısı olarak da uygulanır. Bu çerçeve, yalnızca kullanıcının giriş verilerini kolayca değiştirdiği çeşitli yalıtılmış kelime tanıma işlemlerine kolayca uygulanabilir. Bu çalışmadaki ana katkı, SOFTMAX'ı çeşitli özellik çıkarma teknikleriyle birleştirmiştir. SOFTMAX, (0,1) arasındaki etiketlere girdi özelliklerini analiz eden ve sınıflandırma veya regresyon sorunları için son katman fonksiyonu olarak çeşitli derin öğrenme tekniklerinde kullanılan trend olasılık fonksiyonudur. Elde edilen sonuçlar, özellik çıkarma için uygulanan sesli sinyal işleme teknikleri ile birleştirilmiş çeşitli makine öğrenme ve derin öğrenme teknikleri uygulanarak bu alanda sunulan çeşitli çalışmalarla karşılaştırılmıştır.Master Thesis Işık Mikroskobu Kullanarak Hücre Sayımı için Alternatif Bir Görüntü İşleme Yaklaşımı(2011) Özkan, Akın; Tora, Hakan; İşgör, S. BelginHücre sayımı ve bu hücrelerin sınıflandırılması için kullanılan yöntemler mikro biyoloji ve hücre biyolojisi alanında önemli bir yer tutmaktadır. En temel sayma mikroskop aracılığıyla Hemositometre kullanılarak insan tarafından yapılır. Bu süreçte hücre sayısı ve canlılığını belirlemek için kullanılan en ekonomik ve en yaygın teknik boya dışlama yöntemidir. Bu çalışmada, hücre canlı-ölü ayrımı yapabilen yeni bir görüntü tabanlı hücre sayımı yaklaşımı (NIBA-C) önerilmiştir. Önerilen yöntemin başarısını değerlendirmek için aynı görüntüler, yöntem ile elde edilen değerler klasik boya dışlama yöntemi ile elde edilen sonuçlar ile karşılaştırılmıştır. Yöntemi segmentasyon ve ardından görüntülerin sınıflandırılması oluşturur. Segmentasyon aşamasında Hough Dönüşümü kullanılmıştır. Yapay Sinir Ağları hücre-hücre olmayan ve canlı-ölü hücre görüntü sınıflandırmasında kullanılmıştır.Bu çalışmada; önerilen yöntem NIBA-C %70 in üzerinde yerbulma ve %50 üzerinde canlı ölü ayrımı yapabilme yetenegi sergilemiştir.Master Thesis Platformdan Bağımsız Bir Otomatik Konuşma Tanıma Sisteminin Tasarlanması ve Uygulanması(2012) Urgun, Doğan; Erden, Abdulkadir; Tora, HakanBu tez içerisinde, 50 kelime ile sınırlı bir ayrık kelimeli hece tabanlı konuşma tanıma sistemi tasarlanmış ve test edilmiştir. Türkçenin sondan eklemeli yapısından dolayı kelime tabanlı bir yaklaşımın konuşma tanıma performansı üzerinde negatif etkisi olacaktır. Bu sebepten ötürü fonem tabanlı yapılar konuşma tanıma içinde geniş biçimde kullanılmaktadır ancak fonemlerin küçük boyutları onların tanınmasını zorlaştırmaktadır. Bu nedenle, bu tezde hece tabanlı bir yaklaşımın takip edilmesine karar verilmiştir.Bu tez kapsamında bir hece tespit etme algoritması tasarlanmıştır. Mel Frekansı Kepstral Katsayıları özellik çıkarmak üzere seçilmiştir ve Yapay Sinir Ağları hecelerin sınıflandırılmasında kullanılmıştır. Son olarak, Yapay Sinir Ağlarının sonuçları hece tabanlı sistem için tasarlanan dil modeli içerisinde işlenmiştir.Tasarlanan sistem 5 farklı kişiden 50 kelime için alınan 10 örnekle eğitilmiş ve test edilmiştir. Sistem yaklaşık %85 konuşma tanıma performansı göstermiştir. Ayrıca sistem eğitilmemiş bir konuşmacı tarafından da test edilmiş ve %75 konuşma tanıma performansı elde edilmiştir.Master Thesis Konvolutional Nöral Ağ Kullanarak Hasta Elma Ağağı Yapraklarinin Segmentasyon(2020) Al-mashhadanı, Alı; Tora, HakanTarım alanında, uzmanın gözü hastalığı erken bir aşamada tanımlayamayabilir veya doğru bir şekilde teşhis edemeyebilir. Bitki hastalığının yanlış teşhisi genellikle yanlış tedavinin seçilmesine ve bu da mahsulün kaybına neden olur. Bu nedenle, hastalıklı yaprağın otomatik segmentasyon sistemi bu sorunu çözmek için son derece gereklidir. Bu tez Bitki Patolojisi 2020 segmentasyonunda derin öğrenme nin cesaretini görüntüler - FGVC7 veri seti elma kabuğu gibi birden fazla elma foliar hastalığı belirtileri yüksek çözünürlüklü renkli görüntüler içeren, sedir elma pas, ve sağlıklı yapraklar. Önerilen segmentasyon algoritması, U-Net ve ResNet olmak üzere iki farklı mimari kullanılarak yapılan anlamsal segmentasyon yaklaşımıdır. Her iki ağın sonuçları Pixel Accuracy, IoU, F1-Score ve Recall ölçümleri kullanılarak değerlendirilmiş ve karşılaştırma ResNet'in bu amaca yönelik verimliliğini göstermiştir.Master Thesis Rc8660 Ses Sentezleyici ile Türkçe Metinden Konuşma Sentezleme(2015) Karamehmet, Timur; Tora, Hakan; Uslu, İbrahim BaranBu çalışma, metinden konuşma sentezleme problemini ve RC8660 gömülü sisteminin Türkçe'ye uyarlanması için yapılan çalışmaları incelemektedir. Tezde, İngilizce fonemlerle yüklü gelen RC8660 kartının Türkçe konuşma sentezlemesi hedeflenmiştir. Bu amaçla, öncelikle İngilizce'de bulunan fonemlere karşılık gelen Türkçe fonemler tanımlanmıştır. Bunun için IPA: International Phonetic Alphabet'den yararlanılmıştır. Türkçe ve İngilizce'nin hece yapıları farklı olduğu için, kartın sahip olduğu metin ve fonem modlarından yararlanılarak yeni bir harici sözlük tanımlamaya ihtiyaç duyulmuştur. Doğru heceleme için gerekli kurallar, oluşturulan bu sözlüğe tek tek eklenmiştir. RC8660'ın bir konuşmacı doğallığında Türkçe konuşması için vurgu ve tonlama kuralları da tanımlanmıştır. Üretilen konuşmanın düzgün ve anlaşılabilir olması amacıyla karakterler ve sayılar için farklı fonemler kullanılmıştır. Kartın yazılımı olan RC Studio'da yer alan hız, ifade, perde, formant frekansı, ton, gecikme ve telaffuz ayarlarının konuşma üzerindeki etkileri de test edilmiştir. Üretilen konuşmanın kalitesi ortalama görüş skoru (MOS) testi ile ölçülmüştür.Master Thesis Avuç İçi Tanımlaması(2018) Jebrıel, Belal Alı Mesbah; Tora, HakanBu tez, standart bir veritabanı ve bir temizleyici aracılığıyla avuç izi tanımlanmasının uygunluğunu araştırmaktadır. Bu çalışma, sol el ve sağ el görüntüleri içeren veritabanları CASIA ve IIT için iki öznitelik kümesi kullanmaktadır. Yerel ikili örüntü (YİÖ) ve yönlü gradyan histogram (YGH) öznitelikleri, MATLAB tarafından görüntülerden elde edilmiştir. Eğitim ve test setleri bu özelliklerden oluşturuldu. Çok katmanlı katmanlı bir sinir ağı ve lineer ve kuadratik kernel kullanan destek vektör makineleri (DVM), seçilen veritabanlarında eğitilmiş ve test edilmiştir. Seçilen özellikler deneysel olarak birbirleriyle karşılaştırılmıştır. Her iki sınıflandırıcı için YGH'de daha iyi sonuçlar elde edilmiştir. Ayrıca, sınıflandırıcıların performansı da değerlendirilmiştir. Sinir ağın, her iki veri setinin YİÖ öznitelikleri için SVM'den daha iyi sonuçlar verdiği gözlenmiştir. Ancak, YGH özellikleri için birbirlerine göre çok fazla avantajları yoktur. Anahtar Kelimeler: Avuç izi tanımlama, yerel ikili örüntü (YİÖ), yönlü gradyan histogramı (YGH), sinir ağları, destek vektör makinesi (DVM).Doctoral Thesis 3B Medikal Görüntü İşleme İçin Derin Öğrenme Model Mimarisinin Geliştirmesi ve Analizi(2025) Yılmaz, Vadi Su; Doruk, Reşat Özgür; Tora, HakanGünümüzde medikal görüntü segmentasyonuna yönelik geliştirilen derin öğrenme modelleri, yüksek doğruluk sunmalarına rağmen; aşırı hesaplama maliyeti, karmaşık yapılar ve donanım bağımlılığı nedeniyle pratik kullanımda çeşitli sınırlılıklar barın-dırmaktadır. Bu doğrultuda, kullanıcı dostu, düşük donanım gereksinimiyle çalışabi-len, sade ancak derin yapıda, sınırlı veri setlerinde de etkili sonuçlar verebilen, genellenebilir ve güçlü mimarilere duyulan ihtiyaç giderek artmaktadır. Bu tezde, herhangi bir fine-tuning veya dışsal optimizasyona ( pruning, quantization, attention vb.) ihtiyaç duymadan, yalnızca yapısal mimari iyileştirmelerle yüksek doğruluk elde eden donanım dostu bir 3B CNN modeli geliştirilmiştir. Model mimarisi kapsamlı biçimde ele alınmış; katman derinliği, filtre boyutu, kanal sayısı, aktivasyon ve normalizasyon sıralaması gibi birçok parametre sistematik olarak analiz edilmiştir. Farklı çekirdek boyutlarına sahip konvolüsyon filtreleri hem paralel yollarla aynı blok içinde, hem de ardışık katmanlar arasında dağıtılarak farklı mimari konfigürasyonlarla yapılandırılmıştır. Bu yapılarda tek ve çok katmanlı, simetrik ve asimetrik tasarımlar denenmiştir. Ayrıca model tasarımı sürecinde NAS (Neural Architecture Search) yöntemi uygulanmış; elde edilen mimari varyantlar performans açısından değerlendirilmiştir. Geliştirilen model, klasik U-Net'e kıyasla eğitim süresini 2.5 ila 10 kat arasında kısaltmış, FLOPs değerini yaklaşık yarı yarıya düşürmüş ve benzer Dice Benzerlik Katsayısı (DSC) ile segmentasyon doğruluğunu korumayı başarmıştır. Ayrıca yapılan analizlerde, FLOPs'un gerçek zamanlı performansı belirlemede tek başına yeterli bir ölçüt olmadığı ortaya konmuştur. Bu tez kapsamında yürütülen çalışmalar, yalnızca mimari düzeyde gerçekleştirilen iyileştirmelerle yüksek doğruluk ve donanım verimliliğine ulaşılabileceğini göstermekte; geliştirilen yapının sade fakat derin mimarisi-yle genellenebilirliği, sınırlı veri setlerinde başarımı ve hangi mimari parametrelerin modele belirgin katkı sağladığı detaylı biçimde ortaya konmuştur.Master Thesis Frekans Alanında Görüntü Sınıflandırma için Konvolüsyonel Sinir Ağlarının Uygulanması(2024) Dağı, Göktuğ Erdem; Gökçay, Erhan; Tora, HakanBu tezde, Evrişimsel Sinir Ağları (CNN'ler) son yıllarda çeşitli görüntü işleme ve bilgisayarlı görme görevlerinde dikkate değer başarılar elde etmiştir. Geleneksel CNN'ler doğrudan uzaysal alan görüntüleri üzerinde çalışır. Bununla birlikte, Hızlı Fourier Dönüşümü (FFT) yoluyla elde edilen görüntülerin frekans alanı gösterimi, piksel değerlerinin ilişkisizleştirilmesi ve hesaplama karmaşıklığında potansiyel azalma gibi benzersiz avantajlar sunar. Bu tez, görüntü sınıflandırmasını ve tanıma doğruluğunu artırmak için FFT ile dönüştürülmüş görüntülerin CNN algoritmalarına girdi olarak kullanılmasının etkilerini araştırmayı amaçlamaktadır. Araştırma, FFT'nin teorik temellerinin ve özelliklerinin kapsamlı bir incelemesiyle başlıyor. Daha sonra CNN'ler için ön işleme ardışık düzenlerinde FFT'nin entegrasyonunu araştırıyor. Giriş görüntülerini uzamsal alandan frekans alanına dönüştürerek, CNN'lerin en önemli frekans bileşenlerine odaklanarak daha verimli öğrenebileceğini, dolayısıyla yakınsama oranlarını ve genel performansı potansiyel olarak iyileştirebileceğini varsayıyoruz. Bunun etkinliğini değerlendirmek için CIFAR-10 (Kanada İleri Araştırma Enstitüsü), MNIST (Modifiye Ulusal Standartlar ve Teknoloji Enstitüsü)-Digits ve MNIST-Fashion dahil olmak üzere çeşitli kıyaslama veri setleri kullanılarak deneyler gerçekleştirildi. yaklaşmak. FFT ile dönüştürülmüş görüntüler çeşitli CNN mimarilerine beslendi ve sonuçlar, geleneksel uzaysal alan girdileri kullanılarak elde edilenlerle karşılaştırıldı. Sınıflandırma doğruluğu, eğitim süresi ve hesaplamalı kaynak kullanımı gibi ölçümler titizlikle analiz edildi. Sonuçlar, FFT tabanlı ön işlemenin, özellikle veri kümelerinin yüksek frekanslı gürültü veya gereksiz bilgi içerdiği senaryolarda, sınıflandırma doğruluğunda iyileştirmelere yol açabileceğini göstermektedir. Ancak faydaların farklı veri kümeleri ve ağ mimarileri arasında farklılık göstermesi, FFT ön işlemenin etkililiğinin bağlama bağlı olabileceğini düşündürmektedir. Sonuç olarak bu tez, FFT ön işlemesinin CNN iş akışlarına dahil edilmesinin görüntü işleme görevlerini geliştirme konusunda umut vaat ettiğini göstermektedir. Bulgular, hem uzaysal hem de frekans alanı bilgisinden yararlanan hibrit modellerin geliştirilmesi ve FFT tabanlı tekniklerin diğer sinir ağı türlerine ve makine öğrenimi algoritmalarına uygulanması da dahil olmak üzere gelecekteki araştırmalar için yollar önermektedir. Bu çalışma, bilgisayarlı görme alanını geliştirmek için frekans alanı analizinin derin öğrenme metodolojileriyle nasıl sinerjik olarak entegre edilebileceğinin daha geniş bir şekilde anlaşılmasına katkıda bulunmaktadır.Master Thesis Doku ve Şekil Bazlı Özellikler Kullanarak Yüz İfadesi Tanımlama(2016) Gül, Nuray; Tora, HakanSon zamanlarda, yüz ifadesi tanıma sistemleri (YİT), insan-makine etkileşimi uygulamaları (İME) için önemli bir role sahip olmuştur. Mevcut olan birçok sistemde, bir his tanımlanırken ya tüm yüze ait özellikler ya da yüzün bazı bölgelerine ait özellikler birleştirilerek kullanılmıştır. Bu çalışma ise her duygu tanımlanırken sadece bir uygun bölgenin kullanılmasını önermektedir ve böylece bu bölgelerin ayrı ayrı hisler üzerindeki etkilerinin ne olduğunu göstermeyi amaçlamaktadır. Sunulan tasarımda, Şaşkın ve Mutlu hislerinin ağız bölgesinin şekil özellikleri kullanılarak, diğer taraftan Korku, Öfke ve İğrenme hislerinin göz bölgesinin doku özellikleri kullanılarak tanımlanması hedeflenmiştir. Bu sebeple Fourier Tanımlayıcıları (FT) ve Yerel İkili Örüntüler (YİÖ) özellik vectörleri olarak çıkarılmış ve bu özellikler Yapay Sinir Ağları (YSA) kullanılarak sınıflandırılmıştır. Sistem, genişletilmiş Cohn-Kanade Veritabanı (CK+) üzerinde eğitilmiş ve tüm sistem için yaklaşık %88,9 başarım oranı elde edilmiştir.
