Search Results

Now showing 1 - 6 of 6
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Enhancement of the Performance of the Cu2se Band Filters Via Yb Nanosandwiching
    (Wiley, 2019) Khusayfan, Najla M.; Qasrawı, Atef Fayez Hasan; Qasrawi, A. F.; Khanfar, Hazem K.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this article, we report the experimental and theoretical modeling on the band pass filters that are made of two thin film layers of Cu2Se coated onto aluminum substrates and nanosandwiched with 50 nm ytterbium layers. The nanosandwiching of Yb between two layers of Cu2Se is found to decrease the lattice constant, the defect density, and the strain and increase the grain size in the Cu2Se. Electrically, it is observed that, Al/Cu2Se/Al structure exhibits wave trap characteristics with notch frequency of 1.31 GHz. The Yb-layers improved the performance of the band pass filters by increasing the amplitude of the reflection coefficients, increasing the return loss values and decreasing the voltage standing wave ratios. The calculated conduction and wave trapping parameters nominate the Yb-nanosandwiched Cu2Se films for use in communication technology as they exhibit negative capacitance effect and narrow band pass range.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Thickness Effects on the Dielectric Dispersion and Optical Conductivity Parameters of Cuo Thin Films
    (Wiley, 2020) Qasrawi, Atef F.; Qasrawı, Atef Fayez Hasan; Hamamdah, Alaa A.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this article, the effect of film thickness on the structural, optical, dielectric, and optical conductivity parameters of CuO thin films are reported. CuO thin films which are prepared by the physical vapor deposition technique under vacuum pressure of 10(-5) mbar with various thicknesses in the range of 50 to 1000 nm are observed to exhibit amorphous nature of growth. The values of the energy bands gaps, the spectral response of the dielectric constant and of the optical conductivity parameters are highly sensitive to the film thickness. Particularly, while the 50 nm thick CuO films exhibits quantum confinement which forces the material to have wide band gap (2.70 eV), the thicker films display an energy band gap in the infrared range of spectrum. It was also observed that the thicker the films, the more pronounced the nonlinear dielectric response. In addition, analysis of the optical conductivity parameters using Drude-Lorentz approach for optical conduction has shown that the 50 nm thick films can display drift mobility value of 4.65 cm(2)/Vs accompanied with plasmon frequency of 1.20 GHz and free carrier density of 7.5x10(17) cm(3). The Drude-Lorentz analysis has also shown that the free carrier density and the plasmon frequency of CuO decreases with increasing film thickness. This decrement is accompanied with enhancement in the drift mobility values which reaches 12.56 cm(2)/V s as the film thickness exceeds 250 nm. Such features of the thin layer of CuO make them suitable for the production of nano/microthin film transistors.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Effect of Insertion of Aluminum Nanosheets on the Structural, Optical and Dielectric Properties of Stacked Layers of Selenium
    (Natl inst R&d Materials Physics, 2019) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Abu Al Rob, O. H.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this work, the time dependent metal induced crystallization process in stacked layers of selenium that are sandwiched with aluminum nanosheets of thicknesses of 50 nm are investigated by means of X-ray diffraction and optical spectrophotometry techniques. The Al nanosheets motivated the growth of orthorhombic phases of selenium and lowered the energy bang gap of the amorphous films from 2.26 to 1.82 eV when the orthorhombic phase is achieved. The time dependent monitoring of the structural and optical properties over eighteen months have shown that both of the orthorhombic and amorphous phases exhibit a second transformation to hexagonal and stabilize at that phase within ten days of the growth time. The presence of the aluminum nanosheets enhanced the light absorbability by 15 and 5 times in the orthorhombic and hexagonal phases, respectively. In addition, the dielectric spectra of the studied films display similar characteristics in the hexagonal phase with slight differences that results from Al nanosheets. The dielectric spectra for both of the amorphous and orthorhombic phases displayed resonance peaks in the visible and infrared ranges of light. The structural and optical analysis that are carried out through this study represent a guide for using the selenium films in optoelectronic technology.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Post Annealing Effects on the Structural and Optical Properties of Moo3 Sandwiched With Indium Slabs
    (Iop Publishing Ltd, 2019) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Kmail, Haifaa K.; AbuSaa, M.; Khanfar, Hazem K.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Molybdenum trioxide thin films are prepared by the thermal evaporation technique under vacuum pressure of 10(-5) mbar through insertion of indium slabs of thickness of 200 nm between layers of MoO3 and annealing the produced films in the air atmosphere at 250 degrees C for one hour. The films are studied by means of x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, and optical spectrophotometry techniques. The structure of the films is found to be composed monoclinic MoO3, tetragonal indium and cubic In2O3. The phase percentage of In2O3 in the films increased to 26.3% upon annealing at 250 degrees C. The annealing process increased the microstrain, the defect density, the oxygen atomic content and lowered the crystallites and grains sizes in the films. Optically, two energy band gaps of values of 3.20 and 1.70 eV were detected for the MoO3/In/MoO3 system. In addition, nonlinear dielectric response associated with wide range of tunability in the dielectric constant value, in the optical conductivity and in the terahertz cutoff frequency was observed in the near IR spectral range. The annealing of the samples improved the nonlinearity in these parameters and make MoO3/In/MoO3 system more appropriates for optoelectronic technology applications as terahertz cavities and frequency convertors.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Pseudodielectric Dispersion in As2se3< Thin Films
    (Wiley-v C H verlag Gmbh, 2020) Kayed, Tarek S.; Kayed, Tarek Said; Qasrawi, Atef F.; Qasrawı, Atef Fayez Hasan; Kayed, Tarek Said; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Herein, X-ray diffraction, energy dispersive X-ray spectroscopy, and spectral ellipsometry techniques are used to investigate the structural, pseudo-optical, and pseudodielectric properties of arsenic selenide thin films. The stoichiometric films which are prepared by the thermal evaporation technique are found to prefer the amorphous nature of growth. While the pseudoabsorption coefficient spectra display strong absorption bands at 1.84, 1.81, 1.41, and 1.13 eV, the preferred pseudo-optical transitions happen within a direct forbidden energy bandgap of 1.80 eV. In addition, the real part of the pseudodielectric spectra displays three strong resonance peaks at critical energy values of 2.33, 1.90, and 1.29 eV. Modeling of the imaginary part of the pseudodielectric constant spectra in accordance with the Drude-Lorentz approach results in the existence of six linear oscillators. The response of arsenic selenide to elliptically polarized light signals shows that the films exhibit drift mobility, free electron concentration, and plasmon frequency values in the ranges of 0.21-43.96 cm(2) V(-1)s(-1), 1.90-58.0 x 10(19) cm(-3), and 5.8-32.0 GHz, respectively. The optical conductivity parameters for As2Se3 film nominate it as a promising candidate for the fabrication of tunneling diodes suitable for microwaves filtering up to 32.0 GHz and as thin-film transistors.
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Determination of Carrier Effective Mass, Impurity Energy Levels, and Compensation Ratio in Ga4se3< Layered Crystals by Hall Effect Measurements
    (Wiley-v C H verlag Gmbh, 2008) Qasrawi, A. F.; Qasrawı, Atef Fayez Hasan; Gasanly, N. M.; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    In this work, the dark electrical resistivity, charge carriers density and Hall mobility of Ga4Se3S single crystals have been measured and analyzed in the temperature region of 200-350 K. The data analyses have shown that this crystal exhibits an extrinsic n-type of conduction. The temperature-dependent dark electrical resistivity analysis reflected the existence of energy level as 0.31 eV. The temperature dependence of carrier density was analyzed by using the single donor-single acceptor model. The latter analysis allowed the determination of electron effective mass as 0.38m(0), hole effective mass as 0.42m(0), donor impurity energy level as 0.45 eV, acceptor-donor concentration ratio (N-a/N-d) as 0.97 and a donor-acceptor concentration difference as N-d - N-a = 1.5 x 10(11) cm(-3). The Hall mobility of Ga4Se3S is found to increase with decreasing temperature following a power law of slope of similar to(-6.3). The abnormal behavior of mobility was attributed to the domination of phonon scattering and/or crystals anisotropy. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.