Thickness effects on the dielectric dispersion and optical conductivity parameters of CuO thin films

No Thumbnail Available

Date

2020

Authors

Qasrawı, Atef Fayez Hasan
Hamamdah, Alaa A.

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this article, the effect of film thickness on the structural, optical, dielectric, and optical conductivity parameters of CuO thin films are reported. CuO thin films which are prepared by the physical vapor deposition technique under vacuum pressure of 10(-5) mbar with various thicknesses in the range of 50 to 1000 nm are observed to exhibit amorphous nature of growth. The values of the energy bands gaps, the spectral response of the dielectric constant and of the optical conductivity parameters are highly sensitive to the film thickness. Particularly, while the 50 nm thick CuO films exhibits quantum confinement which forces the material to have wide band gap (2.70 eV), the thicker films display an energy band gap in the infrared range of spectrum. It was also observed that the thicker the films, the more pronounced the nonlinear dielectric response. In addition, analysis of the optical conductivity parameters using Drude-Lorentz approach for optical conduction has shown that the 50 nm thick films can display drift mobility value of 4.65 cm(2)/Vs accompanied with plasmon frequency of 1.20 GHz and free carrier density of 7.5x10(17) cm(3). The Drude-Lorentz analysis has also shown that the free carrier density and the plasmon frequency of CuO decreases with increasing film thickness. This decrement is accompanied with enhancement in the drift mobility values which reaches 12.56 cm(2)/V s as the film thickness exceeds 250 nm. Such features of the thin layer of CuO make them suitable for the production of nano/microthin film transistors.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

CuO, dielectric dispersion, drift mobility, optical conduction

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Q4

Scopus Q

Source

Volume

62

Issue

4

Start Page

1453

End Page

1458

Collections