Determination of carrier effective mass, impurity energy levels, and compensation ratio in Ga<sub>4</sub>Se<sub>3</sub>S layered crystals by Hall effect measurements

No Thumbnail Available

Date

2008

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, the dark electrical resistivity, charge carriers density and Hall mobility of Ga4Se3S single crystals have been measured and analyzed in the temperature region of 200-350 K. The data analyses have shown that this crystal exhibits an extrinsic n-type of conduction. The temperature-dependent dark electrical resistivity analysis reflected the existence of energy level as 0.31 eV. The temperature dependence of carrier density was analyzed by using the single donor-single acceptor model. The latter analysis allowed the determination of electron effective mass as 0.38m(0), hole effective mass as 0.42m(0), donor impurity energy level as 0.45 eV, acceptor-donor concentration ratio (N-a/N-d) as 0.97 and a donor-acceptor concentration difference as N-d - N-a = 1.5 x 10(11) cm(-3). The Hall mobility of Ga4Se3S is found to increase with decreasing temperature following a power law of slope of similar to(-6.3). The abnormal behavior of mobility was attributed to the domination of phonon scattering and/or crystals anisotropy. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Description

Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686; Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

4

WoS Q

Q3

Scopus Q

Q3

Source

Volume

205

Issue

7

Start Page

1662

End Page

1665

Collections