Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 124
    Citation - Scopus: 129
    Novel Poly(ε-caprolactone)/Gelatin Wound Dressings Prepared by Emulsion Electrospinning With Controlled Release Capacity of Ketoprofen Anti-Inflammatory Drug
    (Elsevier, 2017) Basar, A. O.; Castro, S.; Torres-Giner, S.; Lagaron, J. M.; Sasmazel, H. Turkoglu
    In the present study, a single and binary Ketoprofen-loaded mats of ultrathin fibers were developed by electrospinning and their physical properties and drug release capacity was analyzed. The single mat was prepared by solution electrospinning of poly(e-caprolactone) (PCL) with Ketoprofen at a weight ratio of 5 wt%. This Ketoprofen-containing PCL solution was also used as the oil phase in a 7:3 (wt/wt) emulsion with gelatin dissolved in acidified water. The resultant stable oil-in-water (O/W) emulsion of PCL-in-gelatin, also containing Ketoprofen at 5 wt%, was electrospun to produce the binary mat. Cross-linking process was performed by means of glutaraldehyde vapor on the electrospun binary mat to prevent dissolution of the hydrophilic gelatin phase. The performed characterization indicated that Ketoprofen was successfully embedded in the single and binary electrospun mats, i.e. PCL and PCL/gelatin, and both mats showed high hydrophobicity but poor thermal resistance. In vitro release studies interestingly revealed that, in comparison to the single PCL electrospun mat, the binary PCL/gelatin mat significantly hindered Ketoprofen burst release and exhibited a sustained release capacity of the drug for up to 4 days. In addition, the electrospun Ketoprofen-loaded mats showed enhanced attachment and proliferation of L929 mouse fibroblast cells, presenting the binary mat the highest cell growth yield due to its improved porosity. The here-developed electrospun materials clearly show a great deal of potential as novel wound dressings with an outstanding controlled capacity to release drugs.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    A Drug-Eluting Nanofibrous Hyaluronic Acid-Keratin Mat for Diabetic Wound Dressing
    (Springernature, 2022) Su, Sena; Bedir, Tuba; Kalkandelen, Cevriye; Sasmazel, Hilal Turkoglu; Basar, Ahmet Ozan; Chen, Jing; Gunduz, Oguzhan
    Diabetes mellitus is a chronic metabolic disease associated with long-term multisystem complications, among which are non-healing diabetic foot ulcers (DFUs). Electrospinning is a sophisticated technique for the preparation of polymeric nanofibers impregnated with drugs for wound healing, burns, and diabetic ulcers. This study describes the fabrication and characterization of a novel drug-eluting dressing made of core-shell structured hyaluronic acid (HA)-keratin (KR)-polyethylene oxide (PEO) and polycaprolactone (PCL) nanofibers to treat diabetic wounds. The core-shell nanofibers produced by the emulsion electrospinning technique provide loading of metformin hydrochloride (MH), HA, and KR in the core of nanofibers, which in return improves the sustained long term release of the drug and prolongs the bioactivity. Morphological and chemical properties of the fibers were examined by SEM, FTIR, and XRD studies. It was observed that the fibers which contain HA and KR showed thin fiber structure, greater swelling capacity, fast degradation and increased cumulative drug release amount than neat emulsion fibers due to the hydrophilic nature of HA and KR. MH showed a sustained release from all fiber samples over 20 days and followed the first-order and Higuchi model kinetics and Fickian diffusion mechanism according to kinetic analysis results. In vitro cell culture studies showed that the developed mats exhibited enhanced biocompatibility performance with HA and KR incorporation. The results show that HA and KR-based emulsion electrospun fiber mats are potentially useful new nanofiber-based biomaterials in their use as drug carriers to treat diabetic wounds.
  • Article
    Citation - WoS: 86
    Citation - Scopus: 102
    Coaxial and Emulsion Electrospinning of Extracted Hyaluronic Acid and Keratin Based Nanofibers for Wound Healing Applications
    (Pergamon-elsevier Science Ltd, 2021) Su, Sena; Bedir, Tuba; Kalkandelen, Cevriye; Basar, Ahmet Ozan; Sasmazel, Hilal Turkoglu; Ustundag, Cem Bulent; Gunduz, Oguzhan
    Novel composites based on poly(epsilon-caprolactone)/polyethylene oxide loaded with hyaluronic acid(HA) and keratin(KR) were produced separately using emulsion and coaxial electrospinning methods. HA and KR were extracted from animal sources, characterized and loaded into coaxial fiber structures as bioactive agents, separately and together. Morphological, chemical, thermal, and mechanical characteristics of the fibers were investigated. According to the SEM results, diameters of smooth and beadless fibers fabricated via emulsion method were at nanoscale (sub-micron) while fibers of coaxial method were at micro scale. Benefitted electrospinning techniques demonstrated that hydrophobic and hydrophilic polymers can be advantageously combined. Core polymer specific FT-IR bands were not visible, their presence was proven with DSC analysis which confirms core-shell morphology of the fibers. In vitro studies exhibited spun mats did not have any cytotoxic effects and the HA and KR incorporated into the fiber structure synergistically increased cell viability and cell proliferation. This study demonstrated that the electrospun fibers containing HA and KR fabricated by both emulsion and coaxial methods can be efficient for wound healing applications.