A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springernature

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Diabetes mellitus is a chronic metabolic disease associated with long-term multisystem complications, among which are non-healing diabetic foot ulcers (DFUs). Electrospinning is a sophisticated technique for the preparation of polymeric nanofibers impregnated with drugs for wound healing, burns, and diabetic ulcers. This study describes the fabrication and characterization of a novel drug-eluting dressing made of core-shell structured hyaluronic acid (HA)-keratin (KR)-polyethylene oxide (PEO) and polycaprolactone (PCL) nanofibers to treat diabetic wounds. The core-shell nanofibers produced by the emulsion electrospinning technique provide loading of metformin hydrochloride (MH), HA, and KR in the core of nanofibers, which in return improves the sustained long term release of the drug and prolongs the bioactivity. Morphological and chemical properties of the fibers were examined by SEM, FTIR, and XRD studies. It was observed that the fibers which contain HA and KR showed thin fiber structure, greater swelling capacity, fast degradation and increased cumulative drug release amount than neat emulsion fibers due to the hydrophilic nature of HA and KR. MH showed a sustained release from all fiber samples over 20 days and followed the first-order and Higuchi model kinetics and Fickian diffusion mechanism according to kinetic analysis results. In vitro cell culture studies showed that the developed mats exhibited enhanced biocompatibility performance with HA and KR incorporation. The results show that HA and KR-based emulsion electrospun fiber mats are potentially useful new nanofiber-based biomaterials in their use as drug carriers to treat diabetic wounds.

Description

Gunduz, Oguzhan/0000-0002-9427-7574; Turkoglu Sasmazel, Hilal/0000-0002-0254-4541

Keywords

Drug release, Metformin hydrochloride, Emulsion electrospinning, Natural polymers, Wound healing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Scopus Q

Q2

Source

Volume

5

Issue

6

Start Page

1617

End Page

1627

Collections