Coaxial and emulsion electrospinning of extracted hyaluronic acid and keratin based nanofibers for wound healing applications

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Novel composites based on poly(epsilon-caprolactone)/polyethylene oxide loaded with hyaluronic acid(HA) and keratin(KR) were produced separately using emulsion and coaxial electrospinning methods. HA and KR were extracted from animal sources, characterized and loaded into coaxial fiber structures as bioactive agents, separately and together. Morphological, chemical, thermal, and mechanical characteristics of the fibers were investigated. According to the SEM results, diameters of smooth and beadless fibers fabricated via emulsion method were at nanoscale (sub-micron) while fibers of coaxial method were at micro scale. Benefitted electrospinning techniques demonstrated that hydrophobic and hydrophilic polymers can be advantageously combined. Core polymer specific FT-IR bands were not visible, their presence was proven with DSC analysis which confirms core-shell morphology of the fibers. In vitro studies exhibited spun mats did not have any cytotoxic effects and the HA and KR incorporated into the fiber structure synergistically increased cell viability and cell proliferation. This study demonstrated that the electrospun fibers containing HA and KR fabricated by both emulsion and coaxial methods can be efficient for wound healing applications.

Description

Gunduz, Oguzhan/0000-0002-9427-7574; Sengor, Mustafa/0000-0002-2447-7538; Ustundag, Cem/0000-0002-4439-0878; SU, Sena/0000-0002-2207-4559; Turkoglu Sasmazel, Hilal/0000-0002-0254-4541

Keywords

Hyaluronic acid, Keratin, Emulsion electrospinning, Coaxial electrospinning, Wound healing

Turkish CoHE Thesis Center URL

Fields of Science

Citation

63

WoS Q

Q1

Scopus Q

Source

Volume

142

Issue

Start Page

End Page

Collections