4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 55Citation - Scopus: 70Assessment of Features and Classifiers for Bluetooth Rf Fingerprinting(Ieee-inst Electrical Electronics Engineers inc, 2019) Ali, Aysha M.; Uzundurukan, Emre; Kara, AliRecently, network security has become a major challenge in communication networks. Most wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray. Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy distributions (TFED) are utilized. By means of the signals' energy envelopes, the transient signals are detected with some improvements. Thirteen features are extracted from the signals' transients along with their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of three different classifiers to the extracted features is provided for the first time in this paper. A comparative analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves (AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted features and the classifier performances. The classification performance demonstrates the feasibility of the method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals at the physical layer security of wireless networks.Data Paper Citation - WoS: 42Citation - Scopus: 62A Database for the Radio Frequency Fingerprinting of Bluetooth Devices(Mdpi, 2020) Uzundurukan, Emre; Dalveren, Yaser; Kara, AliRadio frequency fingerprinting (RFF) is a promising physical layer protection technique which can be used to defend wireless networks from malicious attacks. It is based on the use of the distinctive features of the physical waveforms (signals) transmitted from wireless devices in order to classify authorized users. The most important requirement to develop an RFF method is the existence of a precise, robust, and extensive database of the emitted signals. In this context, this paper introduces a database consisting of Bluetooth (BT) signals collected at different sampling rates from 27 different smartphones (six manufacturers with several models for each). Firstly, the data acquisition system to create the database is described in detail. Then, the two well-known methods based on transient BT signals are experimentally tested by using the provided data to check their solidity. The results show that the created database may be useful for many researchers working on the development of the RFF of BT devices.Article Citation - WoS: 5Citation - Scopus: 6Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids(Mdpi, 2023) Awan, Maaz Ali; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliSmart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.Article Citation - WoS: 4Citation - Scopus: 6A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using Ads-B Transmissions(Mdpi, 2024) Gurer, Gursu; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThe automatic dependent surveillance broadcast (ADS-B) system is one of the key components of the next generation air transportation system (NextGen). ADS-B messages are transmitted in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the system open to various types of wireless attacks. In particular, the attacks can be intensified by simple hardware, like a software-defined radio (SDR). In order to provide high security against such attacks, radio frequency fingerprinting (RFF) approaches offer reasonable solutions. In this study, an RFF method is proposed for aircraft identification based on ADS-B transmissions. Initially, 3480 ADS-B samples were collected by an SDR from eight aircrafts. The power spectral density (PSD) features were then extracted from the filtered and normalized samples. Furthermore, the support vector machine (SVM) with three kernels (linear, polynomial, and radial basis function) was used to identify the aircraft. Moreover, the classification accuracy was demonstrated via varying channel signal-to-noise ratio (SNR) levels (10-30 dB). With a minimum accuracy of 92% achieved at lower SNR levels (10 dB), the proposed method based on SVM with a polynomial kernel offers an acceptable performance. The promising performance achieved with even a small dataset also suggests that the proposed method is implementable in real-world applications.

