A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using ADS-B Transmissions

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

The automatic dependent surveillance broadcast (ADS-B) system is one of the key components of the next generation air transportation system (NextGen). ADS-B messages are transmitted in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the system open to various types of wireless attacks. In particular, the attacks can be intensified by simple hardware, like a software-defined radio (SDR). In order to provide high security against such attacks, radio frequency fingerprinting (RFF) approaches offer reasonable solutions. In this study, an RFF method is proposed for aircraft identification based on ADS-B transmissions. Initially, 3480 ADS-B samples were collected by an SDR from eight aircrafts. The power spectral density (PSD) features were then extracted from the filtered and normalized samples. Furthermore, the support vector machine (SVM) with three kernels (linear, polynomial, and radial basis function) was used to identify the aircraft. Moreover, the classification accuracy was demonstrated via varying channel signal-to-noise ratio (SNR) levels (10-30 dB). With a minimum accuracy of 92% achieved at lower SNR levels (10 dB), the proposed method based on SVM with a polynomial kernel offers an acceptable performance. The promising performance achieved with even a small dataset also suggests that the proposed method is implementable in real-world applications.

Description

Kara, Ali/0000-0002-9739-7619

Keywords

automatic dependent surveillance-broadcast, deep learning, radio frequency fingerprinting, wireless security

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Scopus Q

Source

Volume

11

Issue

3

Start Page

End Page

Collections