Assessment of Features and Classifiers for Bluetooth RF Fingerprinting

No Thumbnail Available

Date

2019

Authors

Ali, Aysha M.
Uzundurukan, Emre
Kara, Ali

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee-inst Electrical Electronics Engineers inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.
Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Recently, network security has become a major challenge in communication networks. Most wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray. Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy distributions (TFED) are utilized. By means of the signals' energy envelopes, the transient signals are detected with some improvements. Thirteen features are extracted from the signals' transients along with their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of three different classifiers to the extracted features is provided for the first time in this paper. A comparative analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves (AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted features and the classifier performances. The classification performance demonstrates the feasibility of the method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals at the physical layer security of wireless networks.

Description

Kara, Ali/0000-0002-9739-7619; UZUNDURUKAN, Emre/0000-0003-4868-9639

Keywords

Bluetooth, classification, Hilbert-Huang transform, network security, radio frequency fingerprinting, wireless networks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

38

WoS Q

Q2

Scopus Q

Q1

Source

Volume

7

Issue

Start Page

50524

End Page

50535

Collections