Search Results

Now showing 1 - 10 of 25
  • Article
    Citation - WoS: 23
    Citation - Scopus: 25
    Investigation of Optical Properties of Bi12geo20< Sillenite Crystals by Spectroscopic Ellipsometry and Raman Spectroscopy
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Bi12GeO20 (BGO) compound is one of the fascinating members of sillenites group due to its outstanding photorefractive and photocatalytic characteristics. The present paper aims at investigating optical properties of BGO crystals by means of spectroscopic ellipsometry and Raman spectroscopy measurements. Bi12GeO20 single crystals grown by Czochralski method were structurally characterized by X-ray diffraction (XRD) experiments and the analyses showed that studied crystals have cubic crystalline structure. Raman spectrum exhibited 15 peaks associated with A, E and F modes. Spectroscopic ellipsometry measurement data achieved in the energy region between 1.2 and 6.2 eV were used in the air/sample optical model to get knowledge about complex pseudodielectric constant, pseudorefractive index, pseudoextinction and absorption coefficients of the crystals. Spectral change of real and imaginary part of complex pseudodielectric constant were discussed in detail. Band gap energy of Bi12GeO20 single crystals was calculated to be 3.18 eV using absorption coefficient dependency on photon energy. Critical point energies at which photons are strongly absorbed were determined by utilizing the second energy derivative spectra of components of complex pseudodielectric function. Fitting of both spectra resulted in the presence of four interband transitions with energies of 3.49, 4.11, 4.67 and 5.51 eV.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 5
    Absorption Edge and Optical Constants of Tl2ga2< Crystals From Reflection and Transmission, and Ellipsometric Measurements
    (Elsevier, 2012) Isik, M.; Gasanly, N. M.
    The optical properties of Tl2Ga2S3Se layered crystalline semiconductors were investigated from transmission, reflection and ellipsometric measurements. The experimental results of the room temperature transmission and reflection measurements performed in the wavelength range of 400-1100 nm showed the presence of both indirect and direct transitions in the band structure of the crystals with 2.38 and 2.62 eV band gap energies. Spectroscopic ellipsometry measurements on Tl2Ga2S3Se crystals were carried out on the layer-plane (0 0 1) surfaces with light polarization E perpendicular to c* in the 1.20-4.70 eV spectral range at room temperature. The real and imaginary parts of the dielectric function as well as refractive and absorption indices were found as a result of analysis of ellipsometric data. The Wemple-DiDomenico single-effective-oscillator model was used to study the dispersion of the refractive index in the below band gap energy range. The structures of critical points have been characterized from the second derivative spectra of the dielectric function. The analysis revealed four interband transition structures with 3.14, 3.40, 3.86 and 4.50 eV critical point energies. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 4
    Optical Properties of Cu3in5< Single Crystals by Spectroscopic Ellipsometry
    (Elsevier Gmbh, 2018) Isik, M.; Nasser, H.; Ahmedova, F.; Guseinov, A.; Gasanly, N. M.
    Cu3In5S9 single crystals were investigated by structural methods of x-ray diffraction and energy dispersive spectroscopy and optical techniques of ellipsometry and reflection carried out at room temperature. The spectral dependencies of optical constants; dielectric function, refractive index and extinction coefficient, were plotted in the range of 1.2-6.2 eV from ellipsometric data. The spectra of optical constants obtained from ellipsometry analyses and reflectance spectra presented a sharp change around 1.55 and 1.50 eV, respectively, which are associated with band gap energy of the crystal. The critical point (interband transition) energies were also found from the analyses of second-energy derivative of real and imaginary components of dielectric function. The analyses indicated the presence of four critical points at 2.73, 135, 4.04 and 4.98 eV.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Spectroscopic Ellipsometry Investigation of Optical Properties of Β-ga2s3< Single Crystals
    (Elsevier Science Bv, 2018) Isik, M.; Gasanly, N. M.; Gasanova, L.
    Ga2S3 single crystals were studied by x-ray diffraction (XRD), energy dispersive spectroscopy and spectroscopic ellipsometry measurements. XRD pattern of the sample is well-matched with reported hexagonal structure of beta-Ga2S3 . The spectra of real and imaginary parts of complex dielectric function (epsilon = epsilon(1) + epsilon(2)) and refractive index (N = n + ik) were plotted in the 1.2-6.2 eV range according to results of ellipsometric data. The e 2 -spectrum and analyses of absorption coefficient pointed out that studied sample has band gap energy of 2.48 eV which is consistent with that of beta-Ga(2)S(3)2. Critical point energies of beta-Ga2S3 were also reported in the present study.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Optical Characterization of Nabi(moo4)2< Crystal by Spectroscopic Ellipsometry
    (Springer Heidelberg, 2024) Guler, I.; Isik, M.; Gasanly, N. M.
    The compound NaBi(MoO4)(2) has garnered significant interest in optoelectronic fields. This study employs spectroscopic ellipsometry to thoroughly examine the linear and nonlinear optical characteristics of NaBi(MoO4)(2) crystals, offering detailed insights into their optical behavior. Our investigation presents a precise method for discerning the crystal's spectral features, revealing the spectral variations of key optical parameters such as refractive index, extinction coefficient, dielectric function, and absorption coefficient within the 1.2-5.0 eV range. Through analysis, we determined optical attributes including bandgap energy, critical point energy, and single oscillator parameters. Additionally, we explored the nonlinear optical properties of NaBi(MoO4)(2), unveiling potential applications such as optoelectronic devices, frequency conversion, and optical sensors. This study enhances comprehension of optical properties of NaBi(MoO4)(2), underscoring its significance in future optical and electronic advancements.
  • Article
    Citation - WoS: 12
    Citation - Scopus: 12
    Interband Transitions in Gallium Sulfide Layered Single Crystals by Ellipsometry Measurements
    (Elsevier, 2013) Isik, M.; Gasanly, N. M.; Turan, R.
    Spectroscopic ellipsometry measurements on the GaS single crystals are presented in the energy range of 1.2 - 6.2 eV at room temperature. Optical constants; pseudorefractive index, pseudoextinction coefficient, real and imaginary parts of the pseudodielectric function were determined. Analysis of the second derivative of real and imaginary parts of the pseudodielectric constant revealed five transitions with critical point energies of 3.95, 4.22, 4.51, 4.75 and 5.50 eV. These energies were assigned to interband transitions according to theoretical study of GaS band structure available in literature. (C) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 22
    Spectroscopic Ellipsometry Study of Above-Band Gap Optical Constants of Layered Structured Tlgase2, Tlgas2 and Tlins2 Single Crystals
    (Elsevier Science Bv, 2012) Isik, M.; Gasanly, N. M.; Turan, R.
    Spectroscopic ellipsometry measurements on TlGaSe2, TlGaS2 and TlInS2 layered crystals were carried out on the layer-plane (0 0 1) surfaces, which are perpendicular to the optic axis c*, in the 1.2- 6.2 eV spectral range at room temperature. The real and imaginary parts of the pseudodielectric function as well as pseudorefractive index and pseudoextinction coefficient were found as a result of analysis of ellipsometric data. The structures of critical points in the above-band gap energy range have been characterized from the second derivative spectra of the pseudodielectric function. The analysis revealed four, five and three interband transition structures with critical point energies 2.75, 3.13, 3.72 and 4.45 eV (TlGaSe2), 3.03, 3.24, 3.53, 4.20 and 4.83eV (TlGaS2), and 3.50, 3.85 and 4.50 eV (TlInS2). For TlGaSe2 crystals, the determined critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure. (c) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Exploring the Linear and Nonlinear Optical Behavior of (tlins2)0.75(tlinse2)0.25: Insights From Ellipsometry Measurements
    (Elsevier, 2023) Isik, M.; Guler, I.; Gasanly, N.
    The search for layered structured new semiconductor materials with remarkable optical properties has become a driving force, especially for materials science. Tl2In2S3Se [(TlInS2)0.75(TlInSe2)0.25], a fascinating compound, holds great promise for advanced photonic and optoelectronic applications. In the present study, the linear and nonlinear optical properties of Tl2In2S3Se layered single crystals were studied by ellipsometry measurements. The variation of refractive index, extinction coefficient, absorption coefficient and skin depth with energy were investigated. Applying the derivative analysis technique to the absorption spectrum, indirect bandgap was found as 2.19 eV. The refractive index data was analyzed considering single-effective-oscillator model. The lattice dielectric constant, plasma frequency, carrier density to the effective mass ratio and zero-frequency refractive index were found. Moreover, the change in optical conductivity with energy yielded to determine the direct bandgap as 2.40 eV. The optical parameters of nonlinear refractive index, first-and third-order nonlinear susceptibilities were also reported.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 20
    Optical characteristics of Bi12SiO20 single crystals by spectroscopic ellipsometry
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Nasser, H.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Structural and optical characteristics of Bi12SiO20 single crystal grown by the Czochralski method were investigated by virtue of X-ray diffraction (XRD) and spectroscopic ellipsometry measurements. XRD analysis indicated that the studied crystal possesses cubic structure with lattice parameters of a = 1.0107 nm. Spectral dependencies of several optical parameters like complex dielectric constant, refractive index, extinction and absorption coefficients were determined using ellipsometry experiments performed in the energy region of 1.2-6.2 eV. The energy band gap of Bi12SiO20 crystals was found to be 3.25 eV by utilizing absorption coefficient analysis. Moreover, critical point energies were calculated as 3.54, 4.02, 4.82 and 5.58 eV from analyses of the second energy derivative spectra of the complex dielectric constant.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Effect of Thallium (tl) Substitution for Indium (in) on Ellipsometric Characteristics of Tlinse2 Single Crystals
    (Elsevier Sci Ltd, 2021) Isik, M.; Gasanly, N. M.
    TlMeSe2 (Me: Tl, In) semiconducting compounds exhibiting chain structure have been attractive ternary materials in various technological devices. In the TlMeSe2 structure, Tl1+ is monovalent while Me3+ is trivalent ions. The present paper reports the results of spectroscopic ellipsometry measurements performed on Tl1+(Tl0.2In0.8)3+Se2 (abbreviated as Tl1.2In0.8Se2) single crystals which were grown by substituting thallium for indium. The measurements were performed for orientations of E//c and Etc (E: electric field and c: optical axis). The analyses of ellipsometry data considering air-sample optical model presented the spectral dependencies of dielectric function, refractive index and extinction coefficient in the 1.2-5.0 eV range. Critical point energies of studied single crystal were obtained by fitting second-energy derivative spectra of dielectric function. The determined energies were compared with those of TlInSe2 to understand the effect of thalliumindium substitution in the compound. The crystal structure and atomic compositions of the constituent elements were also reported throughout the paper.