Effect of thallium (Tl) substitution for indium (In) on ellipsometric characteristics of TlInSe<sub>2</sub> single crystals

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

TlMeSe2 (Me: Tl, In) semiconducting compounds exhibiting chain structure have been attractive ternary materials in various technological devices. In the TlMeSe2 structure, Tl1+ is monovalent while Me3+ is trivalent ions. The present paper reports the results of spectroscopic ellipsometry measurements performed on Tl1+(Tl0.2In0.8)3+Se2 (abbreviated as Tl1.2In0.8Se2) single crystals which were grown by substituting thallium for indium. The measurements were performed for orientations of E//c and Etc (E: electric field and c: optical axis). The analyses of ellipsometry data considering air-sample optical model presented the spectral dependencies of dielectric function, refractive index and extinction coefficient in the 1.2-5.0 eV range. Critical point energies of studied single crystal were obtained by fitting second-energy derivative spectra of dielectric function. The determined energies were compared with those of TlInSe2 to understand the effect of thalliumindium substitution in the compound. The crystal structure and atomic compositions of the constituent elements were also reported throughout the paper.

Description

Gasanly, Nizami/0000-0002-3199-6686; Isik, Mehmet/0000-0003-2119-8266

Keywords

TlInSe2, Ellipsometry, Critical points, Optical properties

Turkish CoHE Thesis Center URL

Fields of Science

Citation

5

WoS Q

Q2

Scopus Q

Q1

Source

Volume

134

Issue

Start Page

End Page

Collections