Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 31
    Citation - Scopus: 37
    Behavior of Steel-Concrete Partially Composite Beams With Channel Type Shear Connectors
    (Elsevier Sci Ltd, 2014) Baran, Eray; Topkaya, Cem
    This paper summarizes the findings of an experimental study investigating the flexural behavior of partially composite beams incorporating channel type shear connectors. Results from monotonic load testing of four full-scale steel-concrete composite beams and a steel beam are presented. The main effort focused on identifying the variation of strength and stiffness properties of beams with various degrees of partial composite action. Behavior of channel shear connectors in the composite beam specimens is related to those previously obtained from push-out tests of similar connectors. Finally, recommendations of the related AISC Specification on the strength and stiffness of composite beams are used for the assessment of the influence of the degree of partial composite action on flexural behavior. The experimental results revealed that even for beams with relatively low degree of partial composite action, major improvement on moment capacity and stiffness was obtained as compared to the steel specimen. The measured moment capacity of both the partially composite and fully composite beams agreed acceptably with the calculated capacities. The effective moment of inertia and the lower bound moment of inertia as specified by the AISC Specification were observed to overestimate the measured flexural stiffness of beams for all degrees of partial composite action investigated. (C) 2014 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 69
    Citation - Scopus: 78
    An Experimental Study on Channel Type Shear Connectors
    (Elsevier Sci Ltd, 2012) Baran, Eray; Topkaya, Cem
    This paper describes an experimental study on European channel shear connectors. While shear studs are widely used in steel-concrete composite elements, the channel connectors are also gaining popularity due to their certain advantages. The channel connectors do not require special equipment and standard welding procedures are adequate for attachment purposes. In addition, this type of connector offers higher amounts of shear resistance due to its high contact area with surrounding concrete. Although first studies date back to 1950s. little work has been done in the past to investigate their behavior. Majority of the work done to date was on channel connectors used in North America with a very limited parameter range. An experimental study consisting of 15 push-out tests was carried out to investigate the behavior of European type channel connectors with various heights and lengths. The ultimate resistance of the connectors obtained from experiments was compared against those predicted by North American steel design specifications. It was observed that the equations presented in American and Canadian specifications are too conservative. Based on a model that represents the typical failure mechanism in push-out tests, a new equation was developed for the ultimate resistance of channel shear connectors. It is shown that the developed equation is capable of predicting the ultimate resistance of channel connectors with reasonable accuracy. (C) 2012 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 85
    Citation - Scopus: 104
    Effects of Cast-In Concrete Topping on Flexural Response of Precast Concrete Hollow-Core Slabs
    (Elsevier Sci Ltd, 2015) Baran, Eray
    Results of a study focusing on the flexural response of precast prestressed concrete hollow-core slabs with cast-in-place concrete topping are presented. The experimental part of the study included load testing of five precast concrete hollow-core units. The numerically determined flexural response of test specimens was later compared with the experimentally obtained behavior. Results demonstrate that a major composite action is valid between the hollow-core unit and the topping slab under load levels corresponding to uncracked state of the cross section. Existence of a topping slab resulted in improvements in the cracking moment and initial stiffness of hollow-core units. The beneficial effect of topping slab on the ultimate moment capacity was observed to be limited, mainly because of the loss of composite action prior to reaching the ultimate moment capacity. Horizontal shear strength at the interface between hollow-core unit and topping slab was determined (1) through limited number of pushoff load tests and (2) through calculations considering the load level corresponding to initiation of significant relative slip using the basic mechanics of materials approach and the simplified code expression. The measured and computed interface shear strength values were observed to be significantly lower than the horizontal shear strength values specified by the ACI and AASHTO Specifications. (C) 2015 Elsevier Ltd. All rights reserved.