Behavior of steel-concrete partially composite beams with channel type shear connectors

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

This paper summarizes the findings of an experimental study investigating the flexural behavior of partially composite beams incorporating channel type shear connectors. Results from monotonic load testing of four full-scale steel-concrete composite beams and a steel beam are presented. The main effort focused on identifying the variation of strength and stiffness properties of beams with various degrees of partial composite action. Behavior of channel shear connectors in the composite beam specimens is related to those previously obtained from push-out tests of similar connectors. Finally, recommendations of the related AISC Specification on the strength and stiffness of composite beams are used for the assessment of the influence of the degree of partial composite action on flexural behavior. The experimental results revealed that even for beams with relatively low degree of partial composite action, major improvement on moment capacity and stiffness was obtained as compared to the steel specimen. The measured moment capacity of both the partially composite and fully composite beams agreed acceptably with the calculated capacities. The effective moment of inertia and the lower bound moment of inertia as specified by the AISC Specification were observed to overestimate the measured flexural stiffness of beams for all degrees of partial composite action investigated. (C) 2014 Elsevier Ltd. All rights reserved.

Description

TOPKAYA, CEM/0000-0003-0528-1756; Baran, Eray/0000-0002-0240-803X

Keywords

Composite construction, Steel, Concrete, Channel, Connector, Beam test, Partial composite

Turkish CoHE Thesis Center URL

Citation

25

WoS Q

Q2

Scopus Q

Q1

Source

Volume

97

Issue

Start Page

69

End Page

78

Collections