An Experimental Study on Channel Type Shear Connectors

Loading...
Publication Logo

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

This paper describes an experimental study on European channel shear connectors. While shear studs are widely used in steel-concrete composite elements, the channel connectors are also gaining popularity due to their certain advantages. The channel connectors do not require special equipment and standard welding procedures are adequate for attachment purposes. In addition, this type of connector offers higher amounts of shear resistance due to its high contact area with surrounding concrete. Although first studies date back to 1950s. little work has been done in the past to investigate their behavior. Majority of the work done to date was on channel connectors used in North America with a very limited parameter range. An experimental study consisting of 15 push-out tests was carried out to investigate the behavior of European type channel connectors with various heights and lengths. The ultimate resistance of the connectors obtained from experiments was compared against those predicted by North American steel design specifications. It was observed that the equations presented in American and Canadian specifications are too conservative. Based on a model that represents the typical failure mechanism in push-out tests, a new equation was developed for the ultimate resistance of channel shear connectors. It is shown that the developed equation is capable of predicting the ultimate resistance of channel connectors with reasonable accuracy. (C) 2012 Elsevier Ltd. All rights reserved.

Description

TOPKAYA, CEM/0000-0003-0528-1756; Baran, Eray/0000-0002-0240-803X

Keywords

Composite construction, Steel, Concrete, Channel, Connector, Push-out test

Fields of Science

0211 other engineering and technologies, 02 engineering and technology, 0201 civil engineering

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
60

Source

Journal of Constructional Steel Research

Volume

74

Issue

Start Page

108

End Page

117

Collections

PlumX Metrics
Citations

CrossRef : 64

Scopus : 78

Captures

Mendeley Readers : 67

SCOPUS™ Citations

78

checked on Feb 09, 2026

Web of Science™ Citations

69

checked on Feb 09, 2026

Page Views

2

checked on Feb 09, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
6.71998721

Sustainable Development Goals

SDG data is not available