5 results
Search Results
Now showing 1 - 5 of 5
Article Citation - WoS: 3Citation - Scopus: 5Convolutional Neural Network-Based Vehicle Classification in Low-Quality Imaging Conditions for Internet of Things Devices(Multidisciplinary Digital Publishing Institute (MDPI), 2023) Maiga,B.; Dalveren,Y.; Kara,A.; Derawi,M.Vehicle classification has an important role in the efficient implementation of Internet of Things (IoT)-based intelligent transportation system (ITS) applications. Nowadays, because of their higher performance, convolutional neural networks (CNNs) are mostly used for vehicle classification. However, the computational complexity of CNNs and high-resolution data provided by high-quality monitoring cameras can pose significant challenges due to limited IoT device resources. In order to address this issue, this study aims to propose a simple CNN-based model for vehicle classification in low-quality images collected by a standard security camera positioned far from a traffic scene under low lighting and different weather conditions. For this purpose, firstly, a new dataset that contains 4800 low-quality vehicle images with 100 × 100 pixels and a 96 dpi resolution was created. Then, the proposed model and several well-known CNN-based models were tested on the created dataset. The results demonstrate that the proposed model achieved 95.8% accuracy, outperforming Inception v3, Inception-ResNet v2, Xception, and VGG19. While DenseNet121 and ResNet50 achieved better accuracy, their complexity in terms of higher trainable parameters, layers, and training times might be a significant concern in practice. In this context, the results suggest that the proposed model could be a feasible option for IoT devices used in ITS applications due to its simple architecture. © 2023 by the authors.Article Citation - WoS: 3Citation - Scopus: 6Investigating the Impact of Two Major Programming Environments on the Accuracy of Deep Learning-Based Glioma Detection From Mri Images(Mdpi, 2023) Yilmaz, Vadi Su; Akdag, Metehan; Dalveren, Yaser; Doruk, Resat Ozgur; Kara, Ali; Soylu, AhmetBrain tumors have been the subject of research for many years. Brain tumors are typically classified into two main groups: benign and malignant tumors. The most common tumor type among malignant brain tumors is known as glioma. In the diagnosis of glioma, different imaging technologies could be used. Among these techniques, MRI is the most preferred imaging technology due to its high-resolution image data. However, the detection of gliomas from a huge set of MRI data could be challenging for the practitioners. In order to solve this concern, many Deep Learning (DL) models based on Convolutional Neural Networks (CNNs) have been proposed to be used in detecting glioma. However, understanding which CNN architecture would work efficiently under various conditions including development environment or programming aspects as well as performance analysis has not been studied so far. In this research work, therefore, the purpose is to investigate the impact of two major programming environments (namely, MATLAB and Python) on the accuracy of CNN-based glioma detection from Magnetic Resonance Imaging (MRI) images. To this end, experiments on the Brain Tumor Segmentation (BraTS) dataset (2016 and 2017) consisting of multiparametric magnetic MRI images are performed by implementing two popular CNN architectures, the three-dimensional (3D) U-Net and the V-Net in the programming environments. From the results, it is concluded that the use of Python with Google Colaboratory (Colab) might be highly useful in the implementation of CNN-based models for glioma detection. Moreover, the 3D U-Net model is found to perform better, attaining a high accuracy on the dataset. The authors believe that the results achieved from this study would provide useful information to the research community in their appropriate implementation of DL approaches for brain tumor detection.Article Citation - WoS: 5Citation - Scopus: 6Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids(Mdpi, 2023) Awan, Maaz Ali; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliSmart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.Article Citation - WoS: 4Citation - Scopus: 6A Radio Frequency Fingerprinting-Based Aircraft Identification Method Using Ads-B Transmissions(Mdpi, 2024) Gurer, Gursu; Dalveren, Yaser; Kara, Ali; Derawi, MohammadThe automatic dependent surveillance broadcast (ADS-B) system is one of the key components of the next generation air transportation system (NextGen). ADS-B messages are transmitted in unencrypted plain text. This, however, causes significant security vulnerabilities, leaving the system open to various types of wireless attacks. In particular, the attacks can be intensified by simple hardware, like a software-defined radio (SDR). In order to provide high security against such attacks, radio frequency fingerprinting (RFF) approaches offer reasonable solutions. In this study, an RFF method is proposed for aircraft identification based on ADS-B transmissions. Initially, 3480 ADS-B samples were collected by an SDR from eight aircrafts. The power spectral density (PSD) features were then extracted from the filtered and normalized samples. Furthermore, the support vector machine (SVM) with three kernels (linear, polynomial, and radial basis function) was used to identify the aircraft. Moreover, the classification accuracy was demonstrated via varying channel signal-to-noise ratio (SNR) levels (10-30 dB). With a minimum accuracy of 92% achieved at lower SNR levels (10 dB), the proposed method based on SVM with a polynomial kernel offers an acceptable performance. The promising performance achieved with even a small dataset also suggests that the proposed method is implementable in real-world applications.Review Citation - WoS: 17Citation - Scopus: 29Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning(Mdpi, 2024) Ozel, Berk; Alam, Muhammad Shahab; Khan, Muhammad UmerFire detection and extinguishing systems are critical for safeguarding lives and minimizing property damage. These systems are especially vital in combating forest fires. In recent years, several forest fires have set records for their size, duration, and level of destruction. Traditional fire detection methods, such as smoke and heat sensors, have limitations, prompting the development of innovative approaches using advanced technologies. Utilizing image processing, computer vision, and deep learning algorithms, we can now detect fires with exceptional accuracy and respond promptly to mitigate their impact. In this article, we conduct a comprehensive review of articles from 2013 to 2023, exploring how these technologies are applied in fire detection and extinguishing. We delve into modern techniques enabling real-time analysis of the visual data captured by cameras or satellites, facilitating the detection of smoke, flames, and other fire-related cues. Furthermore, we explore the utilization of deep learning and machine learning in training intelligent algorithms to recognize fire patterns and features. Through a comprehensive examination of current research and development, this review aims to provide insights into the potential and future directions of fire detection and extinguishing using image processing, computer vision, and deep learning.
