50 results
Search Results
Now showing 1 - 10 of 50
Article Citation - WoS: 60Citation - Scopus: 64Computing Optimal Replacement Time and Mean Residual Life in Reliability Shock Models(Pergamon-elsevier Science Ltd, 2017) Eryilmaz, SerkanIn this paper, matrix-based methods are presented to compute the optimal replacement time and mean residual lifetime of a system under particular class of reliability shock models. The times between successive shocks are assumed to have a common continuous phase-type distribution. The system's lifetime is represented as a compound random variable and some properties of phase-type distributions are utilized. Extreme shock model, run shock model, and generalized extreme shock model are shown to be the members of this class. Graphical illustrations and numerical examples are presented for the run shock model when the interarrival times between shocks follow Erlang distribution. (C) 2016 Elsevier Ltd. All rights reserved.Article Citation - WoS: 28Citation - Scopus: 33System Reliability Under Δ-Shock Model(Taylor & Francis inc, 2018) Tuncel, Altan; Eryilmaz, Serkandelta-shock model is one of the widely studied shock models in reliability. Under this model, the system fails when the time between two consecutive shocks falls below a fixed threshold . In this paper, the survival function and the mean time to failure of the system are obtained when the times between successive shocks follow proportional hazard rate model.Article Citation - WoS: 17Citation - Scopus: 16A Study on Reliability of Coherent Systems Equipped With a Cold Standby Component(Springer Heidelberg, 2014) Eryilmaz, SerkanIn this paper, we investigate the effect of a single cold standby component on the performance of a coherent system. In particular, we focus on coherent systems which may fail at the time of the first component failure in the system. We obtain signature based expressions for the survival function and mean time to failure of the coherent systems satisfying the abovementioned property.Article Citation - WoS: 6Citation - Scopus: 7Modeling Systems With Two Dependent Components Under Bivariate Shock Models(Taylor & Francis inc, 2019) Eryilmaz, SerkanSeries and parallel systems consisting of two dependent components are studied under bivariate shock models. The random variables N-1 and N-2 that represent respectively the number of shocks until failure of component 1 and component 2 are assumed to be dependent and phase-type. The times between successive shocks are assumed to follow a continuous phase-type distribution, and survival functions and mean time to failure values of series and parallel systems are obtained in matrix forms. An upper bound for the joint survival function of the components is also provided under the particular case when the times between shocks follow exponential distribution.Article Citation - WoS: 3Citation - Scopus: 3On the Mean Number of Remaining Components in Three-State k-out-of-n< System(Elsevier Science Bv, 2015) Eryilmaz, Serkan; Eryılmaz, Serkan; Eryılmaz, Serkan; Industrial Engineering; Industrial EngineeringA three-state k-out-of-n system with n independent components is considered, where the vector k of integers is determined by given fixed scalars k(1) and k(2) such that k(1), k(2) <= n. The mean number of components of each type either in a perfect functioning state or in a partially working state at the time of the system failure and at a time while the system is working are studied. An optimization problem concerned with the most economical value of n is also formulated. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 21Citation - Scopus: 24Optimization Problems for a Parallel System With Multiple Types of Dependent Components(Elsevier Sci Ltd, 2020) Eryilmaz, Serkan; Ozkut, MuratThis paper is concerned with two optimization problems for a parallel system that consists of dependent components. First, the problem of finding the number of elements in the system that minimizes the mean cost rate of the system is considered. The second problem is concerned with the optimal replacement time of the system. Previous work assumes that the components are independent. We discuss the impact of dropping this assumption. In particular, we numerically examine how the dependence between the components affects the optimal number of units and replacement time for the system which minimize mean cost rates. We first consider the case when the components are exchangeable and dependent, i.e. the system consists of single type of dependent components. Subsequently, we consider a system that consists of multiple types of dependent components. Comparative numerical results are presented for particularly chosen dependence models.Book Part Discrete Scan Statistics Generated by Dependent Trials and Their Applications in Reliability(Springer New York, 2024) Eryilmaz,S.; Yalcin,F.The chapter is concerned with discrete scan statistic based on a sequence of dependent binary trials. In particular, the existing results are reviewed for the distribution of the discrete scan statistic based on a sequence of exchangeable binary trials. The results are discussed in the context of the reliability of the linear consecutive-k-within-m-out-of-n:F system, and a new exact formula for the reliability of the linear consecutive-2-within-m-out-of-n:F system that consists of arbitrarily dependent components is presented. © Springer Science+Business Media, LLC, part of Springer Nature 2024.Article Citation - WoS: 5Citation - Scopus: 6Parallel and Consecutive-k-out-of-n< Systems Under Stochastic Deterioration(Elsevier Science inc, 2014) Eryilmaz, SerkanIn this paper, we study parallel and consecutive-k-out-of-n:F systems consisting of components which are subject to random deterioration with time. The random deterioration in resistance of a component is defined through a stochastic process. We obtain lifetime distribution of a parallel system via classical probabilistic techniques. The lifetime distribution of a consecutive-k-out-of-n:F system is derived using the lifetime distribution of parallel systems and the concept of maximal signature. We also study the optimal replacement time for a parallel system. We present illustrative computational results using MATHCAD. (C) 2013 Elsevier Inc. All rights reserved.Article Citation - WoS: 27Citation - Scopus: 30The Distributions of Sum, Minima and Maxima of Generalized Geometric Random Variables(Springer, 2015) Tank, Fatih; Eryilmaz, SerkanGeometric distribution of order as one of the generalization of well known geometric distribution is the distribution of the number of trials until the first consecutive successes in Bernoulli trials with success probability . In this paper, it is shown that this generalized distribution can be represented as a discrete phase-type distribution. Using this representation along with closure properties of phase-type distributions, the distributions of sum, minima and maxima of two independent random variables having geometric distribution of order are obtained. Numerical results are presented to illustrate the computational details.Article Citation - WoS: 75Citation - Scopus: 77Reliability and Optimal Replacement Policy for an Extreme Shock Model With a Change Point(Elsevier Sci Ltd, 2019) Eryilmaz, Serkan; Kan, CihangirAn extreme shock model when there is a change in the distribution of the magnitudes of shocks is defined and studied. Such a model is useful in practice since a sudden change in environmental conditions may cause a larger shock. In particular, the reliability and mean time to failure of the system is obtained by assuming that the times between arrivals of shocks follow phase-type distribution. The optimal replacement policy that is based on a control limit is also proposed. The results are illustrated when the number of shocks until the change point follows geometric distribution.

