Modeling Systems With Two Dependent Components Under Bivariate Shock Models

No Thumbnail Available

Date

2019

Authors

Eryilmaz, Serkan
Eryılmaz, Serkan

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

Series and parallel systems consisting of two dependent components are studied under bivariate shock models. The random variables N-1 and N-2 that represent respectively the number of shocks until failure of component 1 and component 2 are assumed to be dependent and phase-type. The times between successive shocks are assumed to follow a continuous phase-type distribution, and survival functions and mean time to failure values of series and parallel systems are obtained in matrix forms. An upper bound for the joint survival function of the components is also provided under the particular case when the times between shocks follow exponential distribution.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Phase-type distributions, Reliability, Shock model

Turkish CoHE Thesis Center URL

Fields of Science

Citation

6

WoS Q

Q4

Scopus Q

Source

Volume

48

Issue

6

Start Page

1714

End Page

1728

Collections