Search Results

Now showing 1 - 10 of 23
  • Article
    Citation - WoS: 11
    Development of Antibacterial Composite Electrospun Chitosan-Coated Polypropylene Materials
    (Amer Scientific Publishers, 2018) Gozutok, Melike; Basar, Ahmet Ozan; Sasmazel, Hilal Turkoglu
    In this study, a natural antibacterial substance chitosan was coated with/without potassium sorbate (KS) (0.8% (w/w) of KS, 8% (w/v) chitosan) onto the polypropylene (PP) film by using electrospinning technique to obtain novel antibacterial composite materials for various applications such as wound dressing, tissue engineering, drug delivery and food packaging. Atmospheric pressure plasma surface treatment was applied onto polypropylene films in order to increase its wettability thus enhancing the adhesion capacity of the films and the optimum CA value was determined as 42.75 +/- 0.80 degrees. Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS) analyses were realized to observe the morphological changes and chemical properties of the samples, respectively. Contact angle measurements, tensile testing, oxygen and water vapor transmission rate analyses were performed to obtain wettability values, mechanical properties and WVTRs, respectively. The WVTR was increased by plasma treatment and addition of KS (from 14.264 +/- 0.214% to 21.020 +/- 0.659%). The desired antibacterial performance of the samples was assessed with Staphylococcus aureus and Escherichia coli by inhibition ratio calculation and disc diffusion assay. The highest inhibition ratios were found as 64% for S. aureus and 92% for E. coli for plasma-treated CS-KS-PP films.
  • Correction
    Influence of Water/O2 Plasma Treatment on Cellular Responses of Pcl and Pet Surfaces (vol 21, Pg 123, 2011)
    (Ios Press, 2011) Sasmazel, Hilal Turkoglu; Aday, Sezin; Manolache, Sorin; Gumusderelioglu, Menemse
    [No Abstract Available]
  • Article
    Citation - WoS: 45
    Citation - Scopus: 46
    Novel Hybrid Scaffolds for the Cultivation of Osteoblast Cells
    (Elsevier, 2011) Sasmazel, Hilal Turkoglu
    In this study, natural biodegradable polysaccharide, chitosan, and synthetic biodegradable polymer, poly(epsilon-caprolactone) (PCL) were used to prepare 3D, hybrid polymeric tissue scaffolds (PCL/chitosan blend and PCL/chitosan/PCL layer by layer scaffolds) by using the electrospinning technique. The hybrid scaffolds were developed through HA addition to accelerate osteoblast cell growth. Characteristic examinations of the scaffolds were performed by micrometer, SEM, contact angle measurement system, ATR-FTIR, tensile machine and swelling experiments. The thickness of all electrospun scaffolds was determined in the range of 0.010 +/- 0.001-0.012 +/- 0.002 mm. In order to optimize electrospinning processes, suitable bead-free and uniform scaffolds were selected by using SEM images. Blending of PCL with chitosan resulted in better hydrophilicity for the PCL/chitosan scaffolds. The characteristic peaks of PCL and chitosan in the blend and layer by layer nanofibers were observed. The PCL/chitosan/PCL layer by layer structure had higher elastic modulus and tensile strength values than both individual PCL and chitosan structures. The layer by layer scaffolds exhibited the PBS absorption values of 184.2; 197.2% which were higher than those of PCL scaffolds but lower than those of PCL/chitosan blend scaffolds. SaOs-2 osteosarcoma cell culture studies showed that the highest ALP activities belonged to novel PCL/chitosan/PCL layer by layer scaffolds meaning better cell differentiation on the surfaces. (C) 2011 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 19
    Effects of Nozzle Type Atmospheric Dry Air Plasma on L929 Fibroblast Cells Hybrid Poly (ε-caprolactone)/Chitosan (ε-Caprolactone) Scaffolds Interactions
    (Soc Bioscience Bioengineering Japan, 2016) Ozkan, Ozan; Sasmazel, Hilal Turkoglu
    In the study presented here, in order to improve the surface functionality and topography of poly (epsilon-caprolactone) (PCL)/chitosan/PCL hybrid tissue scaffolds fabricated layer by layer with electrospinning technique, an atmospheric pressure nozzle type plasma surface modification was utilized. The optimization of the plasma process parameters was carried out by monitoring the changes in surface hydrophilicity by using contact angle measurements. SEM, AFM and XPS analyses were utilized to observe the changes in topographical and chemical properties of the modified surfaces. The results showed that applied plasma modification altered the nanotopography and the functionality of the surfaces of the scaffolds. The modification applied for 9 min from a distance of 17 cm was found to provide the possible contact angle value (75.163 +/- 0.083) closest to the target value which is the value of tissue culture polystyrene (TCPS) petri dishes (similar to 49.7 degrees), compared to the unmodified samples (84.46 +/- 3.86). In vitro cell culture was carried out by L929 mouse fibroblast cell line in order to examine the effects of plasma surface modification on cell material interactions. Standard MIT assay showed improved cell viability on/within modified scaffolds confirmed with the observations of the cell attachment and the morphology by means of SEM, fluorescence and confocal imaging. The experiments performed in the study proved the enhanced biocompatibility of the nozzle type dry air plasma modified scaffolds. (C) 2016, The Society for Biotechnology, Japan. All rights reserved.
  • Article
    Development of Electrospun We43 Magnesium Alloy-Like Compound
    (Amer Scientific Publishers, 2020) Ozkan, Ozan; Sasmazel, Hilal Turkoglu; Biskin, Erhan
    Metallic structures are conventionally fabricated with high temperature/deformation processes resulting the smallest possible microscopic structures in the order of several hundreds of micrometer. Therefore, to obtain structures with fibers smaller than 100 Am, those are unsuitable. In this study, electrospinning, a fiber fabrication technique commonly used for polymers, was adopted to fabricate a WE43 magnesium alloy-like fibrous structure. The aim is to adopt metallic WE43 alloy to regenerative medicine using tissue engineering approach by mimicking its composition inside of a fibrous structure. The solution required for electrospinning was obtained with water soluble nitrates of elements in WE43 alloy, and PVP or PVA were added to obtain a spinnable viscosity which was pyrolised away during heat treatment. Electrospinning parameters were optimized with naked-eye observations and SEM as 1.5 g salts and 5 wt.% PVA containing solution prepared at 90 degrees C and electrospun under 30 kV from a distance of 12-15 cm with a feeding rate of 5 mu l/min. Then the samples were subjected to a multi-step heat treatment under argon to remove the polymer and calcinate the nitrates into oxides which was designed based on thermal analyses and reaction kinetics calculations as 6 h at 230 degrees C, 8.5 h at 390 degrees C, 5 h at 465 degrees C, 80 h at 500 degrees C and 10 h at 505 degrees C, consecutively. The characterizations conducted in terms of structure, composition and crystallinity with XRD, XPS, EDX and SEM showed that it is possible to obtain MgaYbNdcZrdOx), (empirical) fibers with the same composition as WE43 in sub-millimeter sizes using this approach.
  • Article
    Design and Fabrication of Dual-Layered PCL/PEG Theranostic Platforms Using 3D Melt Electrowriting for Targeted Delivery and Post-Treatment Monitoring
    (Springer, 2025) Ege, Zeynep Ruya; Enguven, Gozde; Ege, Hasan; Durukan, Barkan Kagan; Sasmazel, Hilal Turkoglu; Gunduz, Oguzhan
    Advanced pancreatic tumors remain highly resistant to treatment due to their dense stromal environment and poor vascularization, which limit drug penetration and efficacy. Even after surgical resection, the high recurrence rate frequently leads to poor prognosis and mortality. To address these challenges, we developed solvent-free three-dimensional (3D) melt electrowritten (MEW) theranostic microfiber patches composed of poly(epsilon-caprolactone) (PCL) and polyethylene glycol (PEG). The patches were designed as dual-layered, 10-layer structures, with gemcitabine (GEM) loaded in the bottom five layers for localized chemotherapy to suppress tumor recurrence, and indocyanine green (ICG) incorporated in the top five layers to enable fluorescence-based post-surgical monitoring. Following fabrication, the patches were characterized both materially and in vitro, with GEM loaded at 100, 250, or 500 mu g/ml. PEG incorporation improved patch flexibility, facilitating the implantation process. In vitro release analysis demonstrated an initial burst followed by sustained, pH-responsive GEM release (similar to 70% at pH 4.0 and similar to 30% at pH 7.4 for 500 mu g/mL GEM at 168 h), while ICG release reached similar to 25% (pH 7.4) and similar to 10% (pH 4.0). GEM-loaded patches significantly reduced Capan-1 cell viability in a dose- and time-dependent manner, achieving >= 50% reduction at 72 h with 500 mu g/mL. Importantly, ICG incorporation did not impair GEM cytotoxicity; confocal imaging confirmed ICG internalization in viable cells and showed a decline in ICG-positive cells with increasing GEM dose, supporting the potential for concurrent therapy and monitoring. Thus, the theranostic patches enable localized, pH-responsive GEM delivery with integrated ICG-based fluorescence imaging, achieving significant cytotoxicity against pancreatic cancer cells while providing a platform for post-surgical surveillance. This solvent-free, layer-addressable approach represents a promising strategy for personalized, locally implantable theranostic systems in pancreatic cancer treatment.
  • Article
    Citation - WoS: 22
    Antibacterial Performance of Pcl-Chitosan Core-Shell Scaffolds
    (Amer Scientific Publishers, 2018) Ozkan, Ozan; Sasmazel, Hilal Turkoglu
    In this study, antibacterial performance of the coaxially electrospun Poly-epsilon-caprolactone (PCL)-chitosan core-shell scaffolds developed, optimized and identified physically and chemically in our previous study, were evaluated for the suitability in wound healing applications. The aim of utilizing a core-shell fibrous scaffold with PCL as core and chitosan as shell was to combine natural biocompatibility, biodegradability and antibacterial properties of chitosan with mechanical properties and resistance to enzymatic degradation of PCL. The scaffolds were prepared with the optimized parameters, obtained from our previous study. Thickness and contact angle measurements as well as Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses confirmed repeated fabrication of PCL-chitosan core-shell scaffolds. In this study, assays specific to wound dressing materials, such as water vapor transmission rate (WVTR), in vitro degradability and antibacterial tests were carried out. WVTR value of PCL-chitosan core-shell scaffolds was higher (2315 +/- 3.4 g/m(2).day) compared to single PCL scaffolds (1654 +/- 3.2 g/m(2).day) due to the higher inter-fiber pore size. Additionally, in vitro degradability assays showed that the susceptibility of chitosan to enzymatic degradation can be significantly improved by hybridization with more resistant PCL while still keeping the scaffold to be considered as biodegradable. Finally, inhibition ratio and inhibition zone measurements showed that the PCL-chitosan core-shell polymeric scaffolds had significant antibacterial performance (52.860 +/- 2.298% and 49.333 +/- 0.719% inhibition ratios; 13.975 +/- 0.124 mm and 12.117 +/- 0.133 mm clear inhibition zones, against E. coli and S. aureus, respectively), close to the native chitosan. Therefore, the developed scaffolds can be considered as suitable candidates for biodegradable wound dressing applications.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Physical and Biological Characteristics of Electrospun Poly (vinyl Alcohol) and Reduced Graphene Oxide Nanofibrous Structure
    (Taylor & Francis Ltd, 2024) Sasmazel, Hilal Turkoglu; Alazzawi, Marwa; Gozutok, Melike; Sadhu, Veera
    The fabrication of graphene-based nanocomposites has been a topic of increasing interest due to graphene's exceptional physical properties and the ability to enhance the properties of various polymeric materials. Evaluating the biocompatibility of these nanocomposites is crucial to ensure their safe and effective use in biomedical applications. This study characterized and assessed the biocompatibility of previously fabricated electrospun polyvinyl alcohol (PVA)/reduced graphene oxide rGO fibrous structures by conducting a comprehensive assessment of their physical and biological characteristics. Contact angle measurements revealed that adding rGO to electrospun PVA fibers enhanced the surface wettability, improving the fibrous structure's PBS absorption capacity and degradation behavior. Including the rGO content resulted in a higher water vapor transmission rate, reaching similar to 48 g/m2day for PVA + 0.5 wt.% rGO and similar to 45 g/m2day for PVA + 1.0 wt.% rGO, compared to similar to 40 g/m2day for electrospun PVA fibers. Cell culture studies, including MTT assay, alkaline phosphatase (ALP) activity analysis, alizarin red staining, fluorescence microscopy, and SEM analyses, demonstrated that electrospun PVA + 1.0 wt.% rGO nanocomposites exhibited superior cell viability, proliferation, and growth compared to other samples, due to the improved physical properties of the PVA + 1.0 wt.% rGO fibrous structure.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Advanced 3d Printed Bone Scaffolds With Sodium Alginate/Tri-calcium Phosphate/Probiotic Bacterial Hydroxyapatite: Enhanced Mechanical and Biocompatible Properties for Bone Tissue Engineering
    (Elsevier Sci Ltd, 2024) Nouri, Sabereh; Emtiazi, Giti; Ulag, Songul; Gunduz, Oguzhan; Koyuncu, Ayse Ceren Calikoglu; Roghanian, Rasoul; Sasmazel, Hilal Turkoglu
    Introduction: The increasing prevalence of severe bone diseases, such as osteoporosis and critical bone defects, necessitates the development of more effective bone substitutes. This study addresses this need by investigating 3D-printed bone scaffolds composed of sodium alginate and tricalcium phosphate, enhanced with three distinct types of hydroxyapatite (HA): bovine-derived HA, commercially available HA, and HA enriched with probiotic bacteria. We aim to evaluate the performance of these scaffolds in terms of mechanical strength, biocompatibility, and their ability to support bone regeneration. Methods: The scaffolds were analyzed through various tests, including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) to characterization. Scanning Electron Microscopy (SEM) was used to examine pore structure, while swelling and degradation tests evaluated the scaffold's stability. Compression testing determined mechanical strength, and in vitro cell culture assays assessed cell proliferation, osteogenic differentiation, and biomineralization. Results: SEM results indicated that 3D scaffolds with probiotic bacterial HA had the desired 472 mu m pore size. These scaffolds demonstrated a strain of 29.26 % and a compressive strength of 10 MPa, meeting the mechanical standards of human trabecular bone. Cell culture studies revealed enhanced cell proliferation by 50 %, osteogenic differentiation with 15.3 U/mg ALP activity, and 1.22-fold biomineralization, suggesting they are highly biocompatible and promote bone growth. Conclusion: Probiotic bacterial HA scaffolds exhibit ideal properties and biocompatibility, enhancing bone regeneration and serving as an ideal alternative to chemical types.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Dielectric Barrier Discharge and Jet Type Plasma Surface Modifications of Hybrid Polymeric Poly (ε-caprolactone)/Chitosan Scaffolds
    (Sage Publications Ltd, 2018) Ozkan, Ozan; Sasmazel, Hilal Turkoglu
    In this study, dry air plasma jet and dielectric barrier discharge Ar+O-2 or Ar+N-2 plasma modifications and their effects on wettability, topography, functionality and biological efficiency of the hybrid polymeric poly (epsilon-caprolactone)/chitosan scaffolds were reported. The samples treated with Ar+O-2 dielectric barrier discharge plasma (80 sccm O-2 flow rate, 3-min treatment) or with dry air plasma jet (15-cm nozzle-sample distance, 13-min treatment) had the closest wettability (49.11 +/- 1.83 and 53.60 +/- 0.95, respectively) to the commercial tissue culture polystyrene used for cell cultivation. Scanning electron microscopy images and X-ray photoelectron spectrometry analysis showed increase in topographical roughness and OH/NH2 functionality, respectively. Increased fluid uptake capacity for the scaffolds treated with Ar+O-2 dielectric barrier discharge plasma (73.60%+/- 1.78) and dry air plasma jet (72.48%+/- 0.75) were also noted. Finally, initial cell attachment as well as seven-day cell viability, growth and proliferation performances were found to be significantly better for both plasma treated scaffolds than for untreated scaffolds.