Advanced 3D printed bone scaffolds with sodium alginate/Tri-calcium phosphate/probiotic bacterial hydroxyapatite: Enhanced mechanical and biocompatible properties for bone tissue engineering

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

Introduction: The increasing prevalence of severe bone diseases, such as osteoporosis and critical bone defects, necessitates the development of more effective bone substitutes. This study addresses this need by investigating 3D-printed bone scaffolds composed of sodium alginate and tricalcium phosphate, enhanced with three distinct types of hydroxyapatite (HA): bovine-derived HA, commercially available HA, and HA enriched with probiotic bacteria. We aim to evaluate the performance of these scaffolds in terms of mechanical strength, biocompatibility, and their ability to support bone regeneration. Methods: The scaffolds were analyzed through various tests, including X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) to characterization. Scanning Electron Microscopy (SEM) was used to examine pore structure, while swelling and degradation tests evaluated the scaffold's stability. Compression testing determined mechanical strength, and in vitro cell culture assays assessed cell proliferation, osteogenic differentiation, and biomineralization. Results: SEM results indicated that 3D scaffolds with probiotic bacterial HA had the desired 472 mu m pore size. These scaffolds demonstrated a strain of 29.26 % and a compressive strength of 10 MPa, meeting the mechanical standards of human trabecular bone. Cell culture studies revealed enhanced cell proliferation by 50 %, osteogenic differentiation with 15.3 U/mg ALP activity, and 1.22-fold biomineralization, suggesting they are highly biocompatible and promote bone growth. Conclusion: Probiotic bacterial HA scaffolds exhibit ideal properties and biocompatibility, enhancing bone regeneration and serving as an ideal alternative to chemical types.

Description

Keywords

Bone scaffold, 3D printing, Probiotic bacterial hydroxyapatite, Biocompatibility

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q1

Scopus Q

Q1

Source

Polymer

Volume

311

Issue

Start Page

End Page

Collections