9 results
Search Results
Now showing 1 - 9 of 9
Article Forced Oscillation of Delay Difference Equations Via Nonprincipal Solution(Wiley, 2018) Ozbekler, AbdullahIn this paper, we obtain a new oscillation result for delay difference equations of the form Delta(r(n)Delta x(n)) + a(n)x(tau n) = b(n); n is an element of N under the assumption that corresponding homogenous equation Delta(r(n)Delta z(n)) + a(n)z(n+1) = 0; n is an element of N is nonoscillatory, where tau(n) <= n + 1. It is observed that the oscillation behaviormay be altered due to presence of the delay. Extensions to forced Emden-Fowler-type delay difference equations Delta(r(n)Delta x(n)) + a(n)vertical bar x(tau n)vertical bar(alpha-1)x(tau n) = b(n); n is an element of N in the sublinear (0 < alpha < 1) and the superlinear (1 < alpha) cases are also discussed.Article Citation - WoS: 1Citation - Scopus: 1Sturmian Comparison Theory for Half-Linear and Nonlinear Differential Equations Via Picone Identity(Wiley, 2017) Ozbekler, AbdullahIn this paper, Sturmian comparison theory is developed for the pair of second-order differential equations; first of which is the nonlinear differential equations of the form (m(t) Phi(beta)(y'))' + Sigma(n)(i=1) q(i)(t) Phi(alpha i)(y) = 0 and the second is the half-linear differential equations (k(t)Phi(beta)(x'))' + p(t)Phi(beta)(x) = 0 where Phi(alpha)(s) = vertical bar s vertical bar(alpha-1)s and alpha(1) > ... > alpha(m) > beta > alpha(m+1) > ... > alpha(n) > 0. Under the assumption that the solution of has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for by employing the new nonlinear version of Picone formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for (1). Examples are given to illustrate the relevance of the results. Copyright (c) 2016 John Wiley & Sons, Ltd.Article Citation - WoS: 4Citation - Scopus: 6On the Oscillation of Even-Order Nonlinear Differential Equations With Mixed Neutral Terms(Hindawi Ltd, 2021) Kaabar, Mohammed K. A.; Özbekler, Abdullah; Grace, Said R.; Alzabut, Jehad; Ozbekler, Abdullah; Siri, Zailan; Özbekler, Abdullah; Mathematics; MathematicsThe oscillation of even-order nonlinear differential equations (NLDiffEqs) with mixed nonlinear neutral terms (MNLNTs) is investigated in this work. New oscillation criteria are obtained which improve, extend, and simplify the existing ones in other previous works. Some examples are also given to illustrate the validity and potentiality of our results.Article Sturmian Comparison Theory for Half-Linear and Nonlinear Differential Equations Via Picone Identity(Univ Nis, Fac Sci Math, 2017) Ozbekler, AbdullahIn this paper, Sturmian comparison theory is developed for the pair of second order differential equations; first of which is the nonlinear differential equations of the form (m(t)Phi(beta) (y'))' + Sigma (n) (i = 1) qi(t)Phi(alpha i) (y) = 0 and the second is the half-linear differential equations (k(t)Phi(beta) (x'))' + p(t) Phi(beta) (x) = 0 where Phi(*)(s) = \ s \(*-1)s and alpha(1) > . . .> alpha(m) > beta > alpha(m + 1) > . . . > alpha(n) > 0. Under the assumption that the solution of Eq. (2) has two consecutive zeros, we obtain Sturm-Picone type and Leighton type comparison theorems for Eq. (1) by employing the new nonlinear version of Picone's formula that we derive. Wirtinger type inequalities and several oscillation criteria are also attained for Eq. (1). Examples are given to illustrate the relevance of the results.Article Citation - WoS: 1Citation - Scopus: 1Forced Oscillation of Sublinear Impulsive Differential Equations Via Nonprincipal Solution(Wiley, 2018) Mostepha, Naceri; Ozbekler, AbdullahIn this paper, we give new oscillation criteria for forced sublinear impulsive differential equations of the form (r(t)x')' + q(t)vertical bar x vertical bar(gamma-1) x = f(t), t not equal theta(i); Delta r(t)x' + q(i)vertical bar x vertical bar(gamma-1) x = f(i), t = theta(i), where gamma is an element of(0, 1), under the assumption that associated homogenous linear equation (r(t)z')' + q(t)z = 0, t not equal theta(i); Delta r(t)z' + q(i)z = 0, t = theta(i). is nonoscillatory.Review Citation - WoS: 3Citation - Scopus: 3Lyapunov Type Inequalities for Second Order Forced Mixed Nonlinear Impulsive Differential Equations(Elsevier Science inc, 2016) Agarwal, Ravi P.; Ozbekler, AbdullahIn this paper, we present some new Lyapunov and Hartman type inequalities for second order forced impulsive differential equations with mixed nonlinearities: x ''(t) + p(t)vertical bar x(t)vertical bar(beta-1)x(t) + q(t)vertical bar x(t)vertical bar(gamma-1)x(t) = f(t), t not equal theta(i); Delta x'(t) + p(i)vertical bar x(t)vertical bar(beta-1)x(t) + q(i)vertical bar x(t)vertical bar(gamma-1) x(t) = f(i), t = theta(i), where p, q, f are real-valued functions, {p(i)}, {q(i)}, {f(i)} are real sequences and 0 < gamma < 1 < beta < 2. No sign restrictions are imposed on the potential functions p, q and the forcing term f and the sequences {p(i)}, {q(i)}, {f(i)}. The inequalities obtained generalize and complement the existing results for the special cases of this equation in the literature. (C) 2016 Elsevier Inc. All rights reserved.Article Citation - WoS: 15Citation - Scopus: 16Disconjugacy Via Lyapunov and Vallee-Poussin Type Inequalities for Forced Differential Equations(Elsevier Science inc, 2015) Agarwal, Ravi P.; Ozbekler, AbdullahIn the case of oscillatory potentials, we present some new Lyapunov and Vallee-Poussin type inequalities for second order forced differential equations. No sign restriction is imposed on the forcing term. The obtained inequalities generalize and compliment the existing results in the literature. (C) 2015 Elsevier Inc. All rights reserved.Article Citation - WoS: 1Citation - Scopus: 2Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term(Hindawi Ltd, 2020) Selvam, A. George Maria; Alzabut, Jehad; Jacintha, Mary; Ozbekler, AbdullahThe paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.Article Citation - Scopus: 1On the Oscillation of Volterra Integral Equations With Positive and Negative Nonlinearities(Wiley-blackwell, 2016) Ozbekler, AbdullahIn the paper, we give new oscillation criteria for Volterra integral equations having different nonlinearities such as superlinearity and sublinearity. We also present some new sufficient conditions for oscillation under the effect of oscillatory forcing term. Copyright (C) 2015 JohnWiley & Sons, Ltd.

