Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term
No Thumbnail Available
Date
2020
Authors
Özbekler, Abdullah
Alzabut, Jehad
Jacintha, Mary
Ozbekler, Abdullah
Journal Title
Journal ISSN
Volume Title
Publisher
Hindawi Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples.
Description
Alzabut, Jehad/0000-0002-5262-1138; Selvam, George Maria/0000-0003-2004-3537
Keywords
[No Keyword Available]
Turkish CoHE Thesis Center URL
Fields of Science
Citation
1
WoS Q
Q1
Scopus Q
Q1
Source
Volume
2020