Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term
| dc.contributor.author | Selvam, A. George Maria | |
| dc.contributor.author | Alzabut, Jehad | |
| dc.contributor.author | Jacintha, Mary | |
| dc.contributor.author | Ozbekler, Abdullah | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:38:09Z | |
| dc.date.available | 2024-07-05T15:38:09Z | |
| dc.date.issued | 2020 | |
| dc.description | Alzabut, Jehad/0000-0002-5262-1138; Selvam, George Maria/0000-0003-2004-3537 | en_US |
| dc.description.abstract | The paper studies the oscillation of a class of nonlinear fractional order difference equations with damping term of the form Delta[psi(lambda)z(eta) (lambda)] + p(lambda)z(eta) (lambda) + q(lambda)F(Sigma(lambda-1+mu)(s=lambda 0) (lambda - s - 1)((-mu)) y(s)) = , where z(lambda) = a(lambda) + b(lambda)Delta(mu) y(lambda), Delta(mu) stands for the fractional difference operator in Riemann-Liouville settings and of order mu, 0 < mu <= 1, and eta >= 1 is a quotient of odd positive integers and lambda is an element of N lambda 0+1-mu. New oscillation results are established by the help of certain inequalities, features of fractional operators, and the generalized Riccati technique. We verify the theoretical outcomes by presenting two numerical examples. | en_US |
| dc.description.sponsorship | Prince Sultan University [RG-DES-2017-01-17] | en_US |
| dc.description.sponsorship | J. Alzabut would like to thank Prince Sultan University for supporting this work through the research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17. | en_US |
| dc.identifier.doi | 10.1155/2020/5495873 | |
| dc.identifier.issn | 2314-8896 | |
| dc.identifier.issn | 2314-8888 | |
| dc.identifier.scopus | 2-s2.0-85087070789 | |
| dc.identifier.uri | https://doi.org/10.1155/2020/5495873 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/3050 | |
| dc.language.iso | en | en_US |
| dc.publisher | Hindawi Ltd | en_US |
| dc.relation.ispartof | Journal of Function Spaces | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | [No Keyword Available] | en_US |
| dc.title | Oscillation Results for a Class of Nonlinear Fractional Order Difference Equations with Damping Term | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Alzabut, Jehad/0000-0002-5262-1138 | |
| gdc.author.id | Selvam, George Maria/0000-0003-2004-3537 | |
| gdc.author.institutional | Özbekler, Abdullah | |
| gdc.author.scopusid | 36660747800 | |
| gdc.author.scopusid | 13105947900 | |
| gdc.author.scopusid | 56083305000 | |
| gdc.author.scopusid | 9434099700 | |
| gdc.author.scopusid | 7405257290 | |
| gdc.author.wosid | Alzabut, Jehad/T-8075-2018 | |
| gdc.author.wosid | Selvam, George Maria/AAB-6783-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Selvam, A. George Maria; Jacintha, Mary] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India; [Alzabut, Jehad] Prince Sultan Univ, Dept Math & Gen Sci, Riyadh 11586, Saudi Arabia; [Ozbekler, Abdullah] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey | en_US |
| gdc.description.endpage | 10 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 2020 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3029903450 | |
| gdc.identifier.wos | WOS:000542349800001 | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.8284102E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | QA1-939 | |
| gdc.oaire.keywords | Mathematics | |
| gdc.oaire.popularity | 2.6235822E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.061 | |
| gdc.openalex.normalizedpercentile | 0.41 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | ae65c9f5-e938-41ab-b335-fed50015a138 | |
| relation.isAuthorOfPublication.latestForDiscovery | ae65c9f5-e938-41ab-b335-fed50015a138 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |