Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

In this paper, we present some new Lyapunov and Hartman type inequalities for second order forced impulsive differential equations with mixed nonlinearities: x ''(t) + p(t)vertical bar x(t)vertical bar(beta-1)x(t) + q(t)vertical bar x(t)vertical bar(gamma-1)x(t) = f(t), t not equal theta(i); Delta x'(t) + p(i)vertical bar x(t)vertical bar(beta-1)x(t) + q(i)vertical bar x(t)vertical bar(gamma-1) x(t) = f(i), t = theta(i), where p, q, f are real-valued functions, {p(i)}, {q(i)}, {f(i)} are real sequences and 0 < gamma < 1 < beta < 2. No sign restrictions are imposed on the potential functions p, q and the forcing term f and the sequences {p(i)}, {q(i)}, {f(i)}. The inequalities obtained generalize and complement the existing results for the special cases of this equation in the literature. (C) 2016 Elsevier Inc. All rights reserved.

Description

Agarwal, Ravi P/0000-0003-0075-1704

Keywords

Lyapunov type inequality, Mixed nonlinear, Sub-linear, Super-linear, Forced, Impulse

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Q1

Scopus Q

Source

Volume

282

Issue

Start Page

216

End Page

225

Collections