Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations
dc.authorid | Agarwal, Ravi P/0000-0003-0075-1704 | |
dc.authorscopusid | 36013313700 | |
dc.authorscopusid | 9434099700 | |
dc.contributor.author | Agarwal, Ravi P. | |
dc.contributor.author | Ozbekler, Abdullah | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:29:23Z | |
dc.date.available | 2024-07-05T14:29:23Z | |
dc.date.issued | 2016 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Agarwal, Ravi P.; Ozbekler, Abdullah] Texas A&M Univ Kingsville, Dept Math, 700 Univ Blvd, Kingsville, TX 78363 USA; [Ozbekler, Abdullah] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description | Agarwal, Ravi P/0000-0003-0075-1704 | en_US |
dc.description.abstract | In this paper, we present some new Lyapunov and Hartman type inequalities for second order forced impulsive differential equations with mixed nonlinearities: x ''(t) + p(t)vertical bar x(t)vertical bar(beta-1)x(t) + q(t)vertical bar x(t)vertical bar(gamma-1)x(t) = f(t), t not equal theta(i); Delta x'(t) + p(i)vertical bar x(t)vertical bar(beta-1)x(t) + q(i)vertical bar x(t)vertical bar(gamma-1) x(t) = f(i), t = theta(i), where p, q, f are real-valued functions, {p(i)}, {q(i)}, {f(i)} are real sequences and 0 < gamma < 1 < beta < 2. No sign restrictions are imposed on the potential functions p, q and the forcing term f and the sequences {p(i)}, {q(i)}, {f(i)}. The inequalities obtained generalize and complement the existing results for the special cases of this equation in the literature. (C) 2016 Elsevier Inc. All rights reserved. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey) | en_US |
dc.description.sponsorship | This work was carried out when the second and third authors were on academic leave, visiting TAMUK (Texas A&M University-Kingsville) and they wish to thank TAMUK. This work is partially supported by TUBITAK (The Scientific and Technological Research Council of Turkey). | en_US |
dc.identifier.citation | 3 | |
dc.identifier.doi | 10.1016/j.amc.2016.02.015 | |
dc.identifier.endpage | 225 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.scopus | 2-s2.0-84959422202 | |
dc.identifier.startpage | 216 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2016.02.015 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/512 | |
dc.identifier.volume | 282 | en_US |
dc.identifier.wos | WOS:000371878200017 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Özbekler, Abdullah | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Diğer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lyapunov type inequality | en_US |
dc.subject | Mixed nonlinear | en_US |
dc.subject | Sub-linear | en_US |
dc.subject | Super-linear | en_US |
dc.subject | Forced | en_US |
dc.subject | Impulse | en_US |
dc.title | Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations | en_US |
dc.type | Review | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ae65c9f5-e938-41ab-b335-fed50015a138 | |
relation.isAuthorOfPublication.latestForDiscovery | ae65c9f5-e938-41ab-b335-fed50015a138 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |