20 results
Search Results
Now showing 1 - 10 of 20
Article Citation - WoS: 21Citation - Scopus: 35Deep Learning-Based Computer-Aided Diagnosis (cad): Applications for Medical Image Datasets(Mdpi, 2022) Kadhim, Yezi Ali; Khan, Muhammad Umer; Mishra, AlokComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.Article Citation - WoS: 16Citation - Scopus: 17Organizational Software Piracy: an Empirical Assessment(Taylor & Francis Ltd, 2007) Mishra, Alok; Akman, Ibrahim; Yazici, AliApplication of Information Technology (IT) has had a significant impact on all aspects of business. Due to technology, the ease with which software can be pirated is increasing and is leading to increased concern for copyright protection. This paper reviews and discusses software piracy issues from a global perspective and reports the findings of a survey concerning the impact of sectors like government, private and academic in Turkey. Although software piracy has long been attracting the interest of academics, no quantitative research has ever been realized in this field in the country. Elsewhere also, most of the software piracy-related studies are from individuals' perspectives and are limited to students, academics, cost, and attitudes. Very few have reported findings related to IT professionals and organizations. The survey was conducted among IT managers of large-scale organizations from different sectors such as the government, private and academic community. Based on the survey of 162 IT managers, the results indicated that sectors have significant impact on software piracy to some extent.Review Citation - WoS: 73Citation - Scopus: 118Hybrid Blockchain Platforms for the Internet of Things (iot): a Systematic Literature Review(Mdpi, 2022) Alkhateeb, Ahmed; Catal, Cagatay; Kar, Gorkem; Mishra, AlokIn recent years, research into blockchain technology and the Internet of Things (IoT) has grown rapidly due to an increase in media coverage. Many different blockchain applications and platforms have been developed for different purposes, such as food safety monitoring, cryptocurrency exchange, and secure medical data sharing. However, blockchain platforms cannot store all the generated data. Therefore, they are supported with data warehouses, which in turn is called a hybrid blockchain platform. While several systems have been developed based on this idea, a current state-of-the-art systematic overview on the use of hybrid blockchain platforms is lacking. Therefore, a systematic literature review (SLR) study has been carried out by us to investigate the motivations for adopting them, the domains at which they were used, the adopted technologies that made this integration effective, and, finally, the challenges and possible solutions. This study shows that security, transparency, and efficiency are the top three motivations for adopting these platforms. The energy, agriculture, health, construction, manufacturing, and supply chain domains are the top domains. The most adopted technologies are cloud computing, fog computing, telecommunications, and edge computing. While there are several benefits of using hybrid blockchains, there are also several challenges reported in this study.Article Citation - WoS: 17Citation - Scopus: 24Iot Platform for Seafood Farmers and Consumers(Mdpi, 2020) Jaeger, Bjorn; Mishra, AlokThere has been a strong growth in aquatic products supported by the global seafood industry. Consumers demand information transparency to support informed decisions and to verify nutrition, food safety, and sustainable operations. Supporting these needs rests on the existence of interoperable Internet of Things (IoT) platforms for traceability that goes beyond the minimum "one up, one down" scheme required by regulators. Seafood farmers, being the source of both food and food-information, are critical to achieving the needed transparency. Traditionally, seafood farmers carry the costs of providing information, while downstream actors reap the benefits, causing limited provision of information. Now, global standards for labelling, data from IoT devices, and the reciprocity of utility from collecting data while sharing them represent great potential for farmers to generate value from traceability systems. To enable this, farmers need an IoT platform integrated with other IoT platforms in the value network. This paper presents a case study of an enterprise-level IoT platform for seafood farmers that satisfies consumers' end-to-end traceability needs while extracting data from requests for information from downstream actors.Article Citation - WoS: 10Citation - Scopus: 13Stress Detection Using Experience Sampling: a Systematic Mapping Study(Mdpi, 2022) Dogan, Gulin; Akbulut, Fatma Patlar; Catal, Cagatay; Mishra, AlokStress has been designated the "Health Epidemic of the 21st Century" by the World Health Organization and negatively affects the quality of individuals' lives by detracting most body systems. In today's world, different methods are used to track and measure various types of stress. Among these techniques, experience sampling is a unique method for studying everyday stress, which can affect employees' performance and even their health by threatening them emotionally and physically. The main advantage of experience sampling is that evaluating instantaneous experiences causes less memory bias than traditional retroactive measures. Further, it allows the exploration of temporal relationships in subjective experiences. The objective of this paper is to structure, analyze, and characterize the state of the art of available literature in the field of surveillance of work stress via the experience sampling method. We used the formal research methodology of systematic mapping to conduct a breadth-first review. We found 358 papers between 2010 and 2021 that are classified with respect to focus, research type, and contribution type. The resulting research landscape summarizes the opportunities and challenges of utilizing the experience sampling method on stress detection for practitioners and academics.Article Citation - WoS: 4Citation - Scopus: 6A Conceptual Design of Smart Management System for Flooding Disaster(Mdpi, 2021) Ibrahim, Thaer; Mishra, AlokDisasters pose a real threat to the lives and property of citizens; therefore, it is necessary to reduce their impact to the minimum possible. In order to achieve this goal, a framework for enhancing the current disaster management system was proposed, called the smart disaster management system. The smart aspect of this system is due to the application of the principles of information and communication technology, especially the Internet of Things. All participants and activities of the proposed system were clarified by preparing a conceptual design by using The Unified Modeling Language diagrams. This effort was made to overcome the lack of citizens' readiness towards the use of information and communication technology as well as increase their readiness towards disasters. This study aims to develop conceptual design that can facilitate in development of smart management system for flooding disaster. This will assist in the design process of the Internet of Things systems in this regard.Article Citation - WoS: 35Citation - Scopus: 61Cybersecurity Enterprises Policies: a Comparative Study(Mdpi, 2022) Mishra, Alok; Alzoubi, Yehia Ibrahim; Gill, Asif Qumer; Anwar, Memoona JaveriaCybersecurity is a critical issue that must be prioritized not just by enterprises of all kinds, but also by national security. To safeguard an organization's cyberenvironments, information, and communication technologies, many enterprises are investing substantially in cybersecurity these days. One part of the cyberdefense mechanism is building an enterprises' security policies library, for consistent implementation of security controls. Significant and common cybersecurity policies of various enterprises are compared and explored in this study to provide robust and comprehensive cybersecurity knowledge that can be used in various enterprises. Several significant common security policies were identified and discussed in this comprehensive study. This study identified 10 common cybersecurity policy aspects in five enterprises: healthcare, finance, education, aviation, and e-commerce. We aimed to build a strong infrastructure in each business, and investigate the security laws and policies that apply to all businesses in each sector. Furthermore, the findings of this study reveal that the importance of cybersecurity requirements differ across multiple organizations. The choice and applicability of cybersecurity policies are determined by the type of information under control and the security requirements of organizations in relation to these policies.Article Citation - WoS: 29Citation - Scopus: 43Software Product Quality Metrics: a Systematic Mapping Study(Ieee-inst Electrical Electronics Engineers inc, 2021) Colakoglu, Fatima Nur; Yazici, Ali; Mishra, AlokIn the current competitive world, producing quality products has become a prominent factor to succeed in business. In this respect, defining and following the software product quality metrics (SPQM) to detect the current quality situation and continuous improvement of systems have gained tremendous importance. Therefore, it is necessary to review the present studies in this area to allow for the analysis of the situation at hand, as well as to enable us to make predictions regarding the future research areas. The present research aims to analyze the active research areas and trends on this topic appearing in the literature during the last decade. A Systematic Mapping (SM) study was carried out on 70 articles and conference papers published between 2009 and 2019 on SPQM as indicated in their titles and abstract. The result is presented through graphics, explanations, and the mind mapping method. The outputs include the trend map between the years 2009 and 2019, knowledge about this area and measurement tools, issues determined to be open to development in this area, and conformity between conference papers, articles and internationally valid quality models. This study may serve as a foundation for future studies that aim to contribute to the development in this crucial field. Future SM studies might focus on this subject for measuring the quality of network performance and new technologies such as Artificial Intelligence (AI), Internet of things (IoT), Cloud of Things (CoT), Machine Learning, and Robotics.Article Citation - WoS: 6Deep Learning-Based Defect Prediction for Mobile Applications(Mdpi, 2022) Jorayeva, Manzura; Akbulut, Akhan; Catal, Cagatay; Mishra, AlokSmartphones have enabled the widespread use of mobile applications. However, there are unrecognized defects of mobile applications that can affect businesses due to a negative user experience. To avoid this, the defects of applications should be detected and removed before release. This study aims to develop a defect prediction model for mobile applications. We performed cross-project and within-project experiments and also used deep learning algorithms, such as convolutional neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model for Android-based applications. Based on our within-project experimental results, the CNN-based model provides the best performance for mobile application defect prediction with a 0.933 average area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is still room for improvement when deep learning algorithms are preferred.Article Citation - WoS: 12Citation - Scopus: 17A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification(Mdpi, 2020) Karim, Ahmad M.; Kaya, Hilal; Guzel, Mehmet Serdar; Tolun, Mehmet R.; Celebi, Fatih V.; Mishra, AlokThis paper proposes a novel data classification framework, combining sparse auto-encoders (SAEs) and a post-processing system consisting of a linear system model relying on Particle Swarm Optimization (PSO) algorithm. All the sensitive and high-level features are extracted by using the first auto-encoder which is wired to the second auto-encoder, followed by a Softmax function layer to classify the extracted features obtained from the second layer. The two auto-encoders and the Softmax classifier are stacked in order to be trained in a supervised approach using the well-known backpropagation algorithm to enhance the performance of the neural network. Afterwards, the linear model transforms the calculated output of the deep stacked sparse auto-encoder to a value close to the anticipated output. This simple transformation increases the overall data classification performance of the stacked sparse auto-encoder architecture. The PSO algorithm allows the estimation of the parameters of the linear model in a metaheuristic policy. The proposed framework is validated by using three public datasets, which present promising results when compared with the current literature. Furthermore, the framework can be applied to any data classification problem by considering minor updates such as altering some parameters including input features, hidden neurons and output classes.

