Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
Description
kadhim, yezi ali/0000-0002-1111-8202; Mishra, Alok/0000-0003-1275-2050; Khan, Muhammad/0000-0002-9195-3477
Keywords
deep learning, CNN, auto-encoder, ant colony optimization, COVID-19, brain tumor
Turkish CoHE Thesis Center URL
Fields of Science
Citation
7
WoS Q
Q2
Scopus Q
Source
Volume
22
Issue
22