Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Software Engineering
(2005)
Department of Software Engineering was founded in 2005 as the first department in Ankara in Software Engineering. The recent developments in current technologies such as Artificial Intelligence, Machine Learning, Big Data, and Blockchains, have placed Software Engineering among the top professions of today, and the future. The academic and research activities in the department are pursued with qualified faculty at Undergraduate, Graduate and Doctorate Degree levels. Our University is one of the two universities offering a Doctorate-level program in this field. In addition to focusing on the basic phases of software (analysis, design, development, testing) and relevant methodologies in detail, our department offers education in various areas of expertise, such as Object-oriented Analysis and Design, Human-Computer Interaction, Software Quality Assurance, Software Requirement Engineering, Software Design and Architecture, Software Project Management, Software Testing and Model-Driven Software Development. The curriculum of our Department is catered to graduate individuals who are prepared to take part in any phase of software development of large-scale software in line with the requirements of the software sector. Department of Software Engineering is accredited by MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) until September 30th, 2021, and has been granted the EUR-ACE label that is valid in Europe. This label provides our graduates with a vital head-start to be admitted to graduate-level programs, and into working environments in European Union countries. The Big Data and Cloud Computing Laboratory, as well as MobiLab where mobile applications are developed, SimLAB, the simulation laboratory for Medical Computing, and software education laboratories of the department are equipped with various software tools and hardware to enable our students to use state-of-the-art software technologies. Our graduates are employed in software and R&D companies (Technoparks), national/international institutions developing or utilizing software technologies (such as banks, healthcare institutions, the Information Technologies departments of private and public institutions, telecommunication companies, TÜİK, SPK, BDDK, EPDK, RK, or universities), and research institutions such TÜBİTAK.
Organizational Unit
Mechatronics Engineering
(2002)
The Atılım University Department of Mechatronics Engineering started its operation in 2002 as the Education Program in Mechatronics Engineering holding a “department” status in Turkey. In addition, it is the first and the only institution for mechatronic engineering education to obtain a MÜDEK (Association for Evaluation and Accreditation of Engineering Programs) accreditation for a duration of 5 years. Mechatronics engineering is a discipline of engineering that combines mechanical, electrical and electronic engineering and software technologies on a machine or a product. These features place the field on a pedestal in today’s industry. The education at our department is also backed by substantial laboratory opportunities. Our students create interesting products of their skills and creativity for their dissertation projects. Should they wish to do so, our students may also proceed with a double-major program in the fields of Computer Engineering, Electrical - Electronics Engineering, Industrial Engineering, or Mechanical, Automotive or Software Engineering. Upon their demands, the Department of Mechatronic Engineering also offers a “Cooperative Education” program implemented in coordination with industrial institutions. Students receiving a portion of their training at industrial institutions and prepare for professional life under this program

Journal Issue

Abstract

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.

Description

kadhim, yezi ali/0000-0002-1111-8202; Mishra, Alok/0000-0003-1275-2050; Khan, Muhammad/0000-0002-9195-3477

Keywords

deep learning, CNN, auto-encoder, ant colony optimization, COVID-19, brain tumor

Turkish CoHE Thesis Center URL

Fields of Science

Citation

7

WoS Q

Q2

Scopus Q

Source

Volume

22

Issue

22

Start Page

End Page

Collections